THE GREEN BOOK
What You Need to Know About Environmental Sciences at Harvard College

Earth & Planetary Sciences
Environmental Science & Engineering
Environmental Science & Public Policy
Integrative Biology
Energy & Environment
What’s Inside
Course Sequence Recommendations for Primary or Joint Concentrators

Earth & Planetary Sciences (EPS)
- **Primary:** 14 courses (56 credits)
- **Joint-Allied:** 11 courses (44 credits)
- **Secondary:** 5 courses (20 credits)
- **Senior Thesis:** Optional, required for honors and joint concentration
- **Department Tutorial:** Required, non-credit

Environmental Science and Engineering (ESE)
Environmental Science and Engineering AB degree:
- **Primary:** 14-16 courses (56-64 credits)
- **Senior Thesis:** Optional
- **Joint-Allied:** Same course requirements as primary, requires thesis
- **Sophomore Forum:** Required, non-credit

Engineering Sciences SB degree, on the Environmental Science and Engineering Track:
- **Primary:** 20 courses (80 credits)
- **Senior Thesis:** Required (through ES 100)
- **Sophomore Forum:** Required, non-credit
The SB program does not participate in joint concentrations

Environmental Science & Public Policy (ESPP)
- **Primary:** 13-14 courses (52-56 credits)
- **Joint-Allied:** Same course requirements as primary, requires thesis
- **Secondary:** 5 courses (20 credits) and Colloquium required, non-credit
- **Senior Thesis:** Required for honors

Integrative Biology (IB)
- **Primary:** 13 courses (52 credits)
- **Secondary:** 5 courses (20 credits)
- **Senior Thesis:** Required for highest honors

Energy and Environment (E&E)
- **Secondary:** 4 courses (16 credits)
- **Colloquium:** Required, non-credit
Environmental Sciences is an interdisciplinary field that integrates the physical and biological sciences. At Harvard, these disciplines are divided into four concentrations and one secondary field. Each has its own focus and requirements, but all provide ways to study the natural world and find solutions to environmental problems.

Course Sequence Recommendations for Primary or Joint Concentrators

For students who are considering a primary or joint in environmental sciences, the chart below lists courses that should, when possible, be taken within the first three terms at Harvard.

<table>
<thead>
<tr>
<th>Earth & Planetary Sciences</th>
<th>Environmental Science & Engineering</th>
<th>Environmental Science & Public Policy</th>
<th>Integrative Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introductory Courses</td>
<td>EPS-ESE 6 [or]</td>
<td>EPS-ESE 6 [or]</td>
<td>LS 1a (or LPSa or LS 50a)</td>
</tr>
<tr>
<td></td>
<td>EPS 10 [or]</td>
<td>EPS 50 [or]</td>
<td>LS 1b (or LS 50b)</td>
</tr>
<tr>
<td></td>
<td>GENED 1018, 1085, 1094, 1090, 1137, 1150, 1167 [or]</td>
<td>GENED 1085 [or]</td>
<td>OEB 10</td>
</tr>
<tr>
<td></td>
<td>Any 50-level EPS course</td>
<td>GENED 1137 [or]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>GENED 1158</td>
<td></td>
</tr>
<tr>
<td>Chemistry</td>
<td>Physical Sciences 11 [or]</td>
<td>Physical Sciences 11 [or]</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>[Plus 1 from either list]</td>
<td>Life Sciences 1a, Physical Sciences 10, [or] Chemistry 17 or 20</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry 17, 20, 40, or 60</td>
<td>Physical Sciences 11 [or]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Sciences 1 [or]</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physical Sciences 11</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td>Math 21a,b, 22a,b, 23a,b, or Applied Math 22a,b</td>
<td>Math 1a,b [and] Math 21a,b [or] Applied Math 22a,b</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>[Plus 1 from list below]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPS 100 or 102 [or]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APMT H 111 or 120 [or]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CS 109a [or]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>STAT 109, 110, or 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics</td>
<td>Physical Sciences 12a [or]</td>
<td>Physical Sciences 12a,b [or]</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Physics 15a [or]</td>
<td>Physical Sciences 15a,b [or]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 16 [or]</td>
<td>Physical Sciences 15b, 16 [or]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physics 19</td>
<td>Applied Physics 50a,b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>[Plus 1 from either list]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physical Sciences 12b, Physical 15b, or Physics 15c</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Earth and Planetary Sciences: EPS

EPS is focused on critical events that have shaped the Earth’s evolution and its place in the solar system. Our approach is to apply interdisciplinary tools to investigate processes from tectonic plate to microbial scale, and across the full sweep of geological time, from the early Earth to the modern world. Using a combination of theoretical, computational, laboratory, and field-based methods, we study natural experiments in Earth’s history, and ultimately test the limits of the Earth’s resilience in the geological past and in our progressively warming world.

EPS provides training in the basic sciences, followed by upper-level courses that focus on disciplines within Earth and planetary sciences including:

- Atmospheric and Ocean Science
- Energy and Climate
- Environmental Geoscience
- Geobiology
- Geochemistry
- Geology
- Planetary Sciences
- Solid Earth Geophysics
Advising and Research

• Small classes that provide direct access to faculty and engaged student participation
• Individual faculty advisor for each EPS concentrator and secondary fielder
• Personalized reports produced twice a year to track academic progress
• Term-time and summer research and lab opportunities with funding
• January and summer field experiences (Death Valley, Alaskan ice fields) with funding
• Option to conduct original research with guidance from EPS faculty, possibly leading to a senior thesis
• Please visit our website to learn more about research opportunities: https://eps.harvard.edu/undergraduate-research-opportunities

Culture

• A mid-size department with a high faculty-to-student ratio
• A tight-knit community with opportunities for informal interactions (daily cookies, weekly pizza) and academic engagement (colloquia, seminars)
• Annual department-funded field trips to locations such as Canadian Rockies, Iceland, and sailing in the Atlantic or Pacific
• Harvard’s Senior Survey results show that EPS consistently ranks near the top—#1 or #2 seven times in the past ten years—in student satisfaction
• To learn more about the EPS department, please visit our website: https://eps.harvard.edu/pages/undergraduate

Careers

Common employment for graduates with EPS degrees include:

• **Energy**: Working in both the renewable and fossil energy sectors
• **Public Service**: Environmental monitoring and analysis, operation and management of environmental facilities, administration of environmental regulations
• **Research**: Conducted at universities or non-profit and governmental research agencies
• **Legal**: Environmental litigation or support in a government agency such as the EPA
• **Education**: Teaching at the elementary school through university levels
• **Medical**: EPS concentration requirements fulfill many of the medical school admission requirements
• **Other**: Broadway keyboardist and musical director, presidential management fellow at the National Park Service, landscape architect, financial portfolio manager
EPS Course List

EPS/FOUNDATIONAL

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS-ESE 6</td>
<td>Introduction to Environmental Science and Engineering</td>
</tr>
<tr>
<td>EPS 10</td>
<td>A Brief History of the Earth</td>
</tr>
<tr>
<td>GENED 1018</td>
<td>How to Build a Habitable Planet</td>
</tr>
<tr>
<td>GENED 1085</td>
<td>Energy Resources and the Environment</td>
</tr>
<tr>
<td>GENED 1094</td>
<td>Confronting Climate Change: A Foundation in Science, Technology, and Politics</td>
</tr>
<tr>
<td>GENED 1098</td>
<td>Natural Disasters</td>
</tr>
<tr>
<td>GENED 1137</td>
<td>The Challenge of Human-Induced Climate Change: Transitioning to a Post Fossil Fuel Future</td>
</tr>
<tr>
<td>GENED 1158</td>
<td>Water and the Environment</td>
</tr>
<tr>
<td>GENED 1167</td>
<td>Climate Crossroads</td>
</tr>
</tbody>
</table>

MATH

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Math 21a</td>
<td>Multivariable Calculus</td>
</tr>
<tr>
<td>Math 21b</td>
<td>Linear Algebra and Differential Equations</td>
</tr>
<tr>
<td>Math 22a</td>
<td>Vector Calculus and Linear Algebra I</td>
</tr>
<tr>
<td>Math 22b</td>
<td>Vector Calculus and Linear Algebra II</td>
</tr>
<tr>
<td>Math 23a</td>
<td>Linear Algebra and Real Analysis I</td>
</tr>
<tr>
<td>Math 23b</td>
<td>Linear Algebra and Real Analysis II</td>
</tr>
<tr>
<td>Applied Math 22a</td>
<td>Solving and Optimizing</td>
</tr>
<tr>
<td>Applied Math 22b</td>
<td>Integrating and Approximating</td>
</tr>
</tbody>
</table>

Data Analysis, Statistics, and Computation

CHEMISTRY

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemistry 60</td>
<td>Foundations of Physical Chemistry</td>
</tr>
</tbody>
</table>

PHYSICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sciences 11</td>
<td>Foundations and Frontiers of Modern Chemistry: A Molecular and Global Perspective</td>
</tr>
<tr>
<td>Chemistry 17</td>
<td>Principles of Organic Chemistry</td>
</tr>
<tr>
<td>Chemistry 20</td>
<td>Organic Chemistry</td>
</tr>
<tr>
<td>Chemistry 40</td>
<td>Inorganic Chemistry</td>
</tr>
</tbody>
</table>

PHYSICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sciences 12a</td>
<td>Mechanics and Statistical Physics from an Analytic, Numerical, and Experimental Perspective</td>
</tr>
<tr>
<td>Physics 15a</td>
<td>Introductory Mechanics and Relativity</td>
</tr>
<tr>
<td>Physics 16</td>
<td>Mechanics and Special Relativity</td>
</tr>
<tr>
<td>Physics 19</td>
<td>Introduction to Theoretical Physics</td>
</tr>
<tr>
<td>Physical Sciences 12b</td>
<td>Electromagnetism and Quantum Physics from an Analytic, Numerical, and Experimental Perspective</td>
</tr>
<tr>
<td>Physics 15b</td>
<td>Introductory Electromagnetism and Statistical Physics</td>
</tr>
<tr>
<td>Physics 15c</td>
<td>Wave Phenomena</td>
</tr>
</tbody>
</table>
CONCENTRATION REQUIREMENTS

Primary: 14 courses (56 credits) + Department Tutorial
A minimum of six EPS courses with at least one course at the 50- or 100-level sampling all three sub-disciplines in Atmosphere(s) and Oceans; Earth History and Geobiology; and Geology, Geophysics and Planetary Science; senior thesis optional

Joint-Allied: 11 courses (44 credits) + Department Tutorial
A minimum of five EPS courses; senior thesis required

Secondary: 5 courses (20 credits) + Department Tutorial
A minimum of two foundational courses and three upper-level EPS courses

For Primary and Joint-Allied Concentrators

<table>
<thead>
<tr>
<th>COURSES</th>
<th>EARTH & PLANETARY SCIENCES FOUNDATIONAL COURSES</th>
</tr>
</thead>
</table>
| 2 COURSES | • EPS-ESE 6 or EPS 10 or
| | • GENED 1018, 1085, 1094, 1098, 1137, 1158, 1167 or
| | • Any 50-level EPS course
| | *No more than one of these from EPS 10 or GENED 1018, 1085, 1094, 1098, 1137, 1158, 1167*

<table>
<thead>
<tr>
<th>COURSES</th>
<th>MATH</th>
</tr>
</thead>
</table>
| 2 COURSES | • Math 21a & 21b or
| | • Math 22a & 22b or
| | • Math 23a & 23b or
| | • Applied Math 22a & 22b |

<table>
<thead>
<tr>
<th>COURSES</th>
<th>DATA ANALYSIS, STATISTICS, AND COMPUTATION</th>
</tr>
</thead>
</table>
| 1 COURSE | • EPS 100 or 102 or
| | • Applied Math 111 or 120 or
| | • CS 109a or
| | • Statistics 109, 110, or 111 |

<table>
<thead>
<tr>
<th>COURSES</th>
<th>CHEMISTRY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 COURSE</td>
<td>• Physical Sciences 11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSES</th>
<th>PHYSICS</th>
</tr>
</thead>
</table>
| 1 COURSE | • Physical Sciences 12a or
| | • Physics 15a or
| | • Physics 16 or
| | • Physics 19 |

<table>
<thead>
<tr>
<th>COURSES</th>
<th>HIGHER CHEMISTRY OR PHYSICS</th>
</tr>
</thead>
</table>
| 1 COURSE | • Chemistry 17, 20, 40, or 60 or
| | • Physical Sciences 12b, Physics 15b, or Physics 15c |

<table>
<thead>
<tr>
<th>COURSES</th>
<th>UPPER-LEVEL EPS COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 COURSES</td>
<td>Primary: Four additional EPS courses, three of which must be numbered 99 or above</td>
</tr>
<tr>
<td>3 COURSES</td>
<td>Joint-Allied: Three additional EPS courses, two of which must be numbered 99 or above</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COURSES</th>
<th>ADDITIONAL COURSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2 COURSES</td>
<td>In EPS or selected courses in related fields to complete the requirement of at least 14 courses for primary or 11 courses for joint-allied</td>
</tr>
</tbody>
</table>

HONORS ELIGIBILITY
EPS 99 Senior Thesis Tutorial and successful completion of a thesis required
For Secondary Field Students

2 COURSES EARTH & PLANETARY SCIENCES FOUNDATIONAL COURSES
- EPS-ESE 6 or EPS 10 or
- GENED 1018, 1085, 1094, 1098, 1137, 1158, 1167 or
- Any 50-level EPS course
- No more than one of these from EPS-ESE 6, EPS 10, or GENED 1018, 1085, 1094, 1098, 1137, 1158, or 1167

3 COURSES UPPER-LEVEL EPS COURSES
EPS Contacts

ACADEMIC PROGRAMS MANAGER
Campbell Halligan
Hoffman Labs 402
617-384-9760
campbellhalligan@fas.harvard.edu

HEAD TUTOR
Roger Fu
Geological Museum 204B
617-384-6991
rogerfu@fas.harvard.edu

HEAD TUTOR
Zhiming Kuang
Geological Museum 455
617-495-2354
kuang@fas.harvard.edu

PRECEPTOR
Esther James
Geological Museum 101A
617-495-0889
estherkjames@fas.harvard.edu

PRECEPTOR
Chloe Anderson
Geological Museum 101B
617-496-2292
chloeanderson@fas.harvard.edu

Starting January 2022
Environmental Science and Engineering: ESE

Students in Environmental Science and Engineering study the fundamental processes underlying environmental systems and explore the nexus between scientific knowledge, regulatory frameworks, and engineering solutions for some of the world’s most pressing environmental problems. This program is structured around the view that the environmental system is comprised of a complex set of chemical, physical, and biological processes, made even more complicated by the various activities of human society. Throughout their coursework, students learn to understand complex environmental problems in an integrated fashion through a range of approaches from theory and modeling to experiments and observations. As part of the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), students in ESE are encouraged to participate in experiential learning and state-of-the-art research with faculty. ESE is uniquely positioned to serve as a point of convergence for science and engineering, and exemplifies the pursuit of a technical liberal arts degree.
Students interested in Environmental Science & Engineering have the option to pursue a Bachelor of Arts (AB) in Environmental Science and Engineering or an ABET-accredited Bachelor of Science (SB) in Engineering Sciences on the ESE track. While students in either degree program take many of the same upper-level ESE courses, the AB program offers the opportunity to study complementary disciplines from other natural and social sciences, and the SB program provides a broader basis in engineering fundamentals with courses from other engineering areas and design. The broad-based, multidisciplinary curriculum of the Environmental Science and Engineering program offers rigorous preparation for students preparing for careers in engineering, green technology, public service, business, or government.

Advising and Research
• A dedicated advising team for each student, including an individual faculty adviser and the Assistant Director of Undergraduate Studies in Environmental Science and Engineering
• A direct connection to the cutting-edge research and facilities at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), including the Active Learning Labs (ALL)
• All SB students complete a senior thesis through their individual senior capstone design project, and AB students have the opportunity to conduct original research with guidance from SEAS faculty resulting in a senior thesis
• https://www.seas.harvard.edu/environmental-science-engineering

Culture
• Small classes that give students direct access to professors
• Weekly lunches sponsored by the Harvard College Engineering Society every Friday
• Opportunities to learn outside of the classroom through extracurricular activities (e.g., Engineers without Borders). All SEAS students are eligible to apply for SEAS Nectar Funding Grants to support their independent initiatives in engineering and applied science

Careers
Here are some examples of what our recent graduates are doing:
• Engineering Consulting: Restoring soil and groundwater through remediation; designing water treatment facilities; developing predictive models to minimize the effect of stormwater run-off; designing buildings with healthier materials and lower carbon footprints
• Green Technology: Capturing methane emission and producing fertilizers from organic waste; transforming CO₂ into cost-competitive fuels and chemical products; leading EV battery programs from development to mass scale production; developing energy-efficient hydroponic systems
• Renewable Energy: Transforming the energy industry by investing in solar access in overlooked areas; designing and deploying large scale solar power projects; helping businesses and institutions transition to renewable energy
• Public Service: Protecting the environment and managing critical infrastructure as environmental engineers (US Forest Service, US Army Corps of Engineers, EPA, etc...); assisting elected officials in the legislative and executive branch
• Finance: Investing in climate technologies; facilitating technological/strategic partnership between industry leaders and green startups
• Further Study: About 20% of our graduates pursue further study (Masters in engineering, public health, business administration; JD; PhD)
Core ESE Courses

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS-ESE 6</td>
<td>Introduction to Environmental Science and Engineering</td>
</tr>
<tr>
<td>ESE 50</td>
<td>The Fluid Earth: Oceans, Atmosphere, Climate, and Environment</td>
</tr>
<tr>
<td>ESE 101</td>
<td>Global Warming Science</td>
</tr>
<tr>
<td>ESE 102</td>
<td>Data Analysis and Statistical Inference in the Earth and Environmental Sciences</td>
</tr>
<tr>
<td>ESE 109</td>
<td>Earth Resources and the Environment</td>
</tr>
<tr>
<td>ESE 122</td>
<td>Designing Satellite Missions: Research Methods through Lens of Earth Observing Systems</td>
</tr>
<tr>
<td>ESE 129</td>
<td>Climate and Atmospheric Physics Laboratory</td>
</tr>
<tr>
<td>ESE 131</td>
<td>Introduction to Physical Oceanography and Climate</td>
</tr>
<tr>
<td>ESE 132</td>
<td>Introduction to Meteorology and Climate</td>
</tr>
<tr>
<td>ESE 133</td>
<td>Atmospheric Chemistry</td>
</tr>
<tr>
<td>ESE 136</td>
<td>Climate and Climate Engineering</td>
</tr>
<tr>
<td>ESE 137</td>
<td>Energy within Environmental Constraints</td>
</tr>
<tr>
<td>ESE 138</td>
<td>Mysteries of Climate Dynamics</td>
</tr>
<tr>
<td>ESE 160</td>
<td>Space Science and Engineering: Theory and Applications</td>
</tr>
<tr>
<td>ESE 161</td>
<td>Applied Environmental Toxicology</td>
</tr>
<tr>
<td>ESE 162</td>
<td>Hydrology</td>
</tr>
<tr>
<td>ESE 163</td>
<td>Pollution Control in Aquatic Ecosystems</td>
</tr>
<tr>
<td>ESE 164</td>
<td>Environmental Chemistry</td>
</tr>
<tr>
<td>ESE 166</td>
<td>State-of-the-Art Instrumentation in Environmental Sciences</td>
</tr>
<tr>
<td>ESE 168</td>
<td>Human Environmental Data Science</td>
</tr>
<tr>
<td>ESE 169</td>
<td>Seminar on Global Pollution Issues</td>
</tr>
<tr>
<td>ES 91</td>
<td>Humanitarian Design Projects (required for SB juniors)</td>
</tr>
<tr>
<td>ES 96</td>
<td>Engineering Problem Solving and Design Project</td>
</tr>
<tr>
<td>ES 100</td>
<td>Engineering Design Project (required for SB seniors)</td>
</tr>
</tbody>
</table>
CONCENTRATION REQUIREMENTS
AB in Environmental Science and Engineering (14-16 courses)

2-4 COURSES MATHEMATICS *(begin according to placement)*
- Math 1a & 1b and
- Math 21a & 21b or
- Math 22a & 22b or
- Math 23b & 23a or
- Applied Math 21a & 21b

2 COURSES PHYSICS
One from: Physical Sciences 12a, Physics 15a, Physics 16, Applied Physics 50a
One from: Physical Sciences 12b, Physics 15b, Applied Physics 50b

2 COURSES CHEMISTRY
Select 2:
- Physical Sciences 11 *(recommended)* or Physical Sciences 1
- Life Sciences 1a or LPSa
- Physical Sciences 10
- Chemistry 17 or 20
- Chemistry 60

SOPHOMORE FORUM
Sophomore year. Non-credit. Spring term.

1 COURSE ESE INTRODUCTORY COURSE
- Environmental Science and Engineering 6
(may substitute GENED 1085, 1094, or 1137 by petition)

2 COURSES ESE BREADTH
Strongly recommended to select one course on environmental physics and one course on environmental chemistry. With permission, students may substitute alternative ESE courses.
- Environmental Physics: ESE 101, 129, 131, 132, or 162
- Environmental Chemistry: ESE 133, 161, 164, or ES 112

5 COURSES APPROVED ELECTIVES
With permission, up to two courses may be substituted with a relevant upper-level course. Only one course marked with an † can count as an elective.
- ES 50, 54, 91r (one term), 96*, 112, 115, 123, 181, 183
- EPS 53, 134, 187
- OEB 55, 120, 157; AM 101†, 105†, 115†, 120†; CS 109a†

DESIGN EXPERIENCE
All students must take an approved course () with significant design experience as one of their ESE Breadth or Approved Electives. This requirement may also be satisfied with a design component within a senior thesis or independent research project (ES 91r).*
SB in Engineering Sciences—Environmental Science and Engineering Track (20 Courses)

General Engineering Sciences Requirements:

4 COURSES MATHEMATICS (begin according to placement)
• Math 1a & 1b
• Math 21a & 21b or Math 22a & 22b or Math 23a & 23b or Applied Math 21a & 21b or Applied Math 22a & 22b

PROBABILITY AND STATISTICS (if starting in Math 1b or higher)
• Applied Mathematics 101 [or]
• Engineering Sciences 150 [or]
• Statistics 110

APPLIED MATHEMATICS (if starting in Math 21a or equivalent)
• Applied Math 104, 105, 106, or 107

2 COURSES PHYSICS
• One from: Physical Sciences 12a, Physics 15a, Physics 16, or Applied Physics 50a
• One from: Physical Sciences 12b, Physics 15b, or Applied Physics 50b

1 COURSE COMPUTER SCIENCE
• Computer Science 50, 51, or 61; Applied Math 10

2 COURSES ENGINEERING DESIGN
• Engineering Sciences 96 and Engineering Sciences 100hf

SOPHOMORE FORUM Sophomore year. Non-credit. Spring term.
Environmental Science and Engineering Track Requirements:

2 COURSES CHEMISTRY
Select two from:
• Physical Sciences 11 (recommended) or PS 1
• Life Sciences 1a or LPS a
• Physical Sciences 10
• Chemistry 17 or 20

5 COURSES ESE CORE
• Environmental Science and Engineering 6 and
Select four from:
• Environmental Science and Engineering 109, 131, 132, 133, 136, 137, 160, 161, 162, 163,
164, 166, 169; Engineering Sciences 112, 123

3 COURSES ENGINEERING BREADTH
Choose one upper-level (>100) course from each of the following depth areas (see the
Student Handbook for complete list of eligible courses in each area):
• Mechanics and Materials
• Electrical
• Engineering Physics and Chemistry

1 COURSE ENGINEERING ELECTIVE
Select one course on engineering topics from any engineering depth area
(see the Student Handbook for complete list of eligible courses)
ESE Contacts

Area Co-Chair for Environmental Science & Engineering

Steven Wofsy

Geological Museum 453
617-495-4566
wofsy@seas.harvard.edu

Area Co-Chair for Environmental Science & Engineering

Frank Keutsch

Mallinckrodt Link 266
617-495-1878
keutsch@seas.harvard.edu

Director of Undergraduate Studies in Environmental Science & Engineering

Elsie Sunderland

Pierce Hall 127
617-496-0858
ems@seas.harvard.edu

Assistant Director of Undergraduate Studies in Environmental Science & Engineering

Bryan Yoon

Pierce Hall 117
617-495-1246
byoon@seas.harvard.edu

Peer Concentration Advisor

Jordan Daigle

Senior in ESE SB
jdaigle@college.harvard.edu

Peer Concentration Advisor

Selena Zhang

Senior in ESE AB
selenazhang@college.harvard.edu

Peer Concentration Advisor

Charlotte Dyvik Henke

Senior in ESE AB
cdyvikhenke@college.harvard.edu

Director of Undergraduate Studies in Engineering Sciences

Zhiming Kuang

Geological Museum 455
617-495-2354
zkuang@seas.harvard.edu
The concentration in Environmental Science and Public Policy is designed to provide a multidisciplinary introduction to current challenges and issues of the environment. It is founded on the premise that the ability to form rational judgements concerning many of the complex challenges involving the environment that confront today’s society requires both an understanding of the underlying scientific and technical issues and an appreciation for the relevant economic, political, legal, historical, and ethical dimensions.

All students have to satisfy a core of requirements in the physical, biological, and social sciences and mathematics. Students in consultation with their faculty advisor identify a field of specialization with a set of advanced courses to provide in-depth understanding of a particular area of environmental science and/or policy. Through their field of specialization, students develop expertise in a particular field of study relating to the environment.
Advising and Research

- All students are matched with a faculty member who serves as their advisor
- Students create and develop their field of specialization with faculty guidance
- All students undertake an independent research project in their senior year—either capstone or honors thesis, both with faculty guidance
- Students are offered the opportunity to participate in local field trips led by faculty

Culture

- A mid-size concentration with access to wide range of faculty who oversee the program, including members of FAS departments in EPS, Economics, Government, and OEB, the Business School, Graduate School of Design, the Kennedy School, the School of Public Health, and SEAS
- A welcoming community residing in the Harvard University Center for the Environment where students, faculty, and staff gather for academic and social events (formal and informal)

Careers

Common employment for graduates with ESPP degrees include:

- **Education and Research:** Teaching at the high school through university levels, environmental research at university and government agencies
- **Energy:** Working in both the renewable and fossil energy sectors
- **Non-Governmental Organization:** Public education and outreach, environmental policy advocacy
- **Public Service:** Environmental monitoring and analysis, operation and management of environmental facilities, administration of environmental regulations
- **Medical:** ESPP requirements track with pre-med and many graduates have pursued medical school
- **Legal:** Some graduates pursue law school motivated by environmental concerns
ESPP Course List

INTRODUCTORY COURSE OPTIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPS-SE 6</td>
<td>Introduction to Environmental Science and Engineering</td>
</tr>
<tr>
<td>EPS 50</td>
<td>The Fluid Earth: Oceans, Atmosphere, Climate, and Environment</td>
</tr>
<tr>
<td>GENED 1085</td>
<td>Energy Resources and the Environment</td>
</tr>
<tr>
<td>GENED 1094</td>
<td>Confronting Climate Change: A Foundation in Science, Technology, and Politics</td>
</tr>
<tr>
<td>GENED 1137</td>
<td>The Challenge of Human-Induced Climate Change: Transitioning to a Post Fossil Fuel Future</td>
</tr>
<tr>
<td>GENED 1158</td>
<td>Water and the Environment</td>
</tr>
</tbody>
</table>

MATH

There are several options for fulfilling the requirement of two courses in mathematics or statistics. The minimum requirement is Math 1a and 1b. (See page 21 for options). More advanced courses can be chosen. Begin according to placement.

BIOLOGICAL SCIENCE COURSE OPTIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEB 10</td>
<td>Foundations of Biological Diversity</td>
</tr>
<tr>
<td>OEB 55</td>
<td>Ecology: Populations, Communities and Ecosystems</td>
</tr>
</tbody>
</table>

PHYSICAL SCIENCE COURSE OPTIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical Sciences 1</td>
<td>Chemical Bonding, Energy, and Reactivity: An Introduction to the Physical Sciences</td>
</tr>
<tr>
<td>Physical Sciences 11</td>
<td>Foundations and Frontiers of Modern Chemistry: A Molecular and Global Perspective</td>
</tr>
</tbody>
</table>

SOCIAL SCIENCE COURSE OPTIONS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPP 77</td>
<td>Technology, Environment, and Society</td>
</tr>
<tr>
<td>ESPP 78</td>
<td>Environmental Politics</td>
</tr>
</tbody>
</table>

ECONOMICS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC1661</td>
<td>Economics of Climate Change and Environmental Policy</td>
</tr>
</tbody>
</table>

JUNIOR SEMINARS

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESPP 90e</td>
<td>Conservation Biology</td>
</tr>
<tr>
<td>ESPP 90g</td>
<td>The Law and Policy of Climate Change: Influencing Decision Makers</td>
</tr>
<tr>
<td>ESPP 90k</td>
<td>Applied Environmental Policy Analysis: Air Pollution, Solar Geoengineering, and Environmental Justice</td>
</tr>
<tr>
<td>ESPP 90m</td>
<td>Natural Climate Solutions: Feasible or Fantasy?</td>
</tr>
<tr>
<td>ESPP 90n</td>
<td>Addressing the Global Climate Crisis: Challenges for Both Developed and Developing Economies</td>
</tr>
<tr>
<td>ESPP 90s</td>
<td>The Technology, Economics, and Public Policy of Renewable Energy</td>
</tr>
</tbody>
</table>
CONCENTRATION REQUIREMENTS

Primary: 13-14 courses (52-56 credits)
Senior Thesis: Required for Honors

Joint (Allied Field): 12 courses (48 credits)
Senior Thesis: Required

Secondary Field: 5 Courses (20 credits) & Non-Credit Colloquium

For ESPP Primary and Joint-Allied Concentrators

1 COURSE
INTRODUCTORY COURSE
The introductory course is designed to provide a multidisciplinary examination of a current environmental challenge.
• EPS-ESE 6, EPS 50, GENED 1085, GENED 1094, GENED 1137, or GENED 1158

1 COURSE
PHYSICAL SCIENCES
• Physical Sciences 1 or 11

2 COURSES
MATH
• Math 1a & 1b; or Math 19a & 19b; Math 21a & 21b; or Applied Math 21a & 21b; or Math 1b & either Math 21a or Applied Math 21a; Math 1b & Stat 100 or 102 or 104

1 COURSE
BIOLOGY
• OEB 10 or OEB 55

1 COURSE
SOCIAL SCIENCES
• ESPP 77 or ESPP 78

1 COURSE
ECONOMICS
• Economics 1661

1 COURSE
JUNIOR SEMINAR
• ESPP 90

4 COURSES
ADVANCED-LEVEL COURSES/FIELD OF SPECIALIZATION
Student’s field of specialization; four advanced courses
At least one course must be chosen from social sciences/policy and from natural sciences/engineering. One course must be in EPS unless a student has taken EPS-ESE 6, EPS 50, GENED 1085, GENED 1094, GENED 1137, or GENED 1158 as their introductory course.

1 COURSE
CAPSTONE PROJECT (Non-honors) or

2 COURSES
SENIOR THESIS (Honors)
• ESPP 91 (1 course) Capstone project, students conduct an in-depth examination of an environmental issue consistent with their field of specialization.
• ESPP 99 (2 courses) Senior Thesis Tutorial (required for honors)
For ESPP Secondary Field Students

1 COURSE INTRODUCTORY COURSE
• EPS-ESE 6, EPS 50, GENED 1085, GENED 1094, GENED 1137, or GENED 1158

4 COURSES ADVANCED COURSES
• 2 advanced courses in the social sciences/policy
• 2 advanced courses in the natural sciences/engineering
• List of advanced course options available on ESPP website

COLLOQUIUM
• During each semester, there are several opportunities for secondary field students to come together to explore various energy and environmental topics through facilitated discussions. These discussions require preparatory readings and/or prior attendance at a public lecture on campus, and students are required to attend at least one session per semester once they have been accepted into the program.

ESPP Contacts (espp.fas.harvard.edu)

HEAD TUTOR
N. Michele Holbrook
HUCE, Room 444C
617-496-6995
holbrook@oeb.harvard.edu

UNDERGRADUATE PROGRAM ADMINISTRATOR
Lorraine Maffeo
HUCE, Room 444A
617-496-6995
maffee@fas.harvard.edu

PRECEPTER
Michaela Thompson
HUCE, Room 449
michaela_thompson@fas.harvard.edu
Integrative Biology: IB

The distinguished ecologist George Evelyn Hutchinson described the history and dynamics of life as an evolutionary play in an ecological theater. The concentration in Integrative Biology (the concentration overseen by the Department of Organismic & Evolutionary Biology, OEB) is dedicated to Hutchinson’s vision, and is therefore inherently interdisciplinary, encompassing mathematical and computational biology, functional and genetic approaches to morphology and development, as well as genetics, evolution, and ecology.

IB students have many chances to study in the field. Courses take students to Australia (OEB 11 Tropical Ecology), Mexico (OEB 190 Birds), Brazil (OEB 103 Plant Systematics), Panama (OEB 51 Invertebrates), and Costa Rica (OEB 167 Reptiles & Amphibians).

IB provides opportunities to engage with a wide range of topics:

- Ecology
- Animal Behavior
- Anatomy and Physiology
- Evolutionary Biology
- Paleobiology
- Plant Biology

Courses on specific groups: insects, fish, mammals, reptiles & amphibians, birds, invertebrates
Advising and Research

• All students, in both concentration and secondary, are advised by IB’s Assistant Director of Undergraduate Studies, Dr. Andrew Berry
• Funded term-time and summer research opportunities in lab and/or field
• Wide-ranging opportunities to do independent senior thesis research with faculty from OEB or related departments
• Harvard provides strong financial support for undergraduate research: https://uraf.harvard.edu/uraf-administered-programs

Culture

• With 35 members of the faculty in OEB and around 40 students per year in IB (for a total of around 120 concentrators), IB provides plenty of opportunities—through coursework, research, and more—to become a part of the OEB family
• IB students run their own undergraduate group, OEBug (OEB Undergraduate Group), which organizes weekend activities, social events, and more
• Because of the many opportunities to go away for a week or more on course field trips, students in IB often get to know each other well, and form a tight community

Careers

As with any science degree from Harvard, IB provides a platform for exploring just about anything after Harvard. Common destinations for graduates with IB degrees include:

• Public Service: Whether through environmental NGOs or through organizations like the National Park Service, IB graduates often end up working in public service
• Research: Typically in PhD programs in the US or overseas, but sometimes through Master’s programs
• Legal: Every year, some IB graduates go to law school, often motivated by environmental concerns
• Education: Teaching at the elementary school through university levels, sometimes through organizations like Teach for America
• Medical: IB concentration requirements fulfill most of the medical school admission requirements
• Veterinary: Most of Harvard’s pre-vet students concentrate in IB
IB Course List

LIFE SCIENCES

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Life Sciences 1a</td>
<td>An Integrated Introduction to the Life Sciences: Chemistry, Molecular Biology, and Cell Biology (fall)</td>
</tr>
<tr>
<td>Life & Physical Sciences a</td>
<td>Foundational Chemistry & Biology (fall)</td>
</tr>
<tr>
<td>Life Sciences 50a</td>
<td>Integrated Science (fall)</td>
</tr>
<tr>
<td>Life Sciences 1b</td>
<td>An Integrated Introduction to the Life Sciences: Genetics, Genomics, and Evolution (spring)</td>
</tr>
<tr>
<td>Life Sciences 50b</td>
<td>Integrated Science (spring)</td>
</tr>
</tbody>
</table>

*Pre-medical students should consider Physical Sciences 1 or 11 (spring) to allow them to take the Organic Chemistry sequence (Chemistry 17-27) as sophomores.

OEB

<table>
<thead>
<tr>
<th>Course</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OEB 10</td>
<td>Foundations of Biological Diversity (fall)</td>
</tr>
<tr>
<td>OEB 11</td>
<td>Introduction to Tropical Ecology (spring, with January field trip to Australia)</td>
</tr>
<tr>
<td>OEB courses</td>
<td>OEB 50-290 on wide-ranging topics including ecology, evolution, animal behavior, plant biology, paleobiology, genetics, population genetics, deep sea biology, entomology, herpetology, ornithology, etc..</td>
</tr>
</tbody>
</table>

Senior Thesis

Required for highest honors

IB Contact

CONCENTRATION AND SECONDARY FIELD ADVISOR

Andrew Berry

BioLabs 1082
16 Divinity Avenue, Cambridge, MA, 02138
617-495-0684
berry@oeb.harvard.edu
CONCENTRATION REQUIREMENTS

Primary: 13 courses (52 credits)
Senior Thesis: optional (typically completed by around 45% of concentrators)

IB does not participate in joint concentrations

Secondary: 5 courses (20 credits)
Any five courses taught by OEB faculty

For Primary Concentrators

3 COURSES FOUNDATIONAL COURSES
• LS 1a/LPSa/LS50a; LS1b/LS50b; OEB10

4 COURSES MATH, APPLIED MATH, COMPUTER SCIENCE, STATISTICS, PHYSICS, CHEMISTRY
• Any four courses (at or above the level of Math 1b in Math and of CS 50 in Computer Science)

4 COURSES MID-LEVEL COURSES
• Four courses chosen from OEB 11, OEB 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 65; MCB 60, 63, 80, 121; SCRB 10; LS 2

2 COURSES ADVANCED-LEVEL COURSES
• Any two courses from any area in the Life Sciences (including OEB, HEB, MCB, etc...) that are not listed above as mid-level courses

HONORS ELIGIBILITY
Honors and high honors may be attained on the basis of within-concentration GPA; highest honors requires a senior thesis

For Secondary Fielders
Any five courses taught by OEB faculty
Energy & Environment: E&E

The energy-environment challenge is a defining issue of our time, and one of Harvard’s greatest contributions to meeting that challenge will be the education of a new generation of leaders in science, business, law, design, and public service. To this end, the Environmental Science and Public Policy (ESPP) program, in coordination with the Harvard University Center for the Environment (HUCE), is pleased to offer the secondary field in Energy and Environment (E&E). Through coursework and a colloquium, students engaged in the E&E secondary field will increase their exposure to, and literacy in, the interdisciplinary nature of issues related to energy and the environment.
E&E Course List

FOUNDATIONAL

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESE 6</td>
<td>Introduction to Environmental Science and Engineering</td>
</tr>
<tr>
<td>EPS 50</td>
<td>The Fluid Earth: Oceans, Atmosphere, Climate, and Environment</td>
</tr>
<tr>
<td>GENED 1085</td>
<td>Energy Resources and the Environment</td>
</tr>
<tr>
<td>GENED 1094</td>
<td>Confronting Climate Change: A Foundation in Science, Technology, and Politics</td>
</tr>
<tr>
<td>GENED 1137</td>
<td>The Challenge of Human-Induced Climate Change: Transitioning to a Post Fossil Fuel Future</td>
</tr>
<tr>
<td>GENED 1158</td>
<td>Water and the Environment</td>
</tr>
</tbody>
</table>

UPPER-LEVEL COURSES

At least one course must be chosen from each of two elective categories:
- Social Sciences and Humanities
- Natural Sciences and Engineering

Secondary Field Requirements (4 Courses)

1 COURSE **FOUNDATIONAL COURSE**
- GENED 1085, GENED 1094, GENED 1137, ESPP 11, ESE 6

3 COURSES **UPPER-LEVEL**
- One from Social Sciences and Humanities
- One from Natural Sciences and Engineering
- The complete list of options can be found on the ESPP website: http://espp.fas.harvard.edu/.

COLLOQUIUM

- During each semester, there are several opportunities for secondary field students to come together to explore various energy and environmental topics through facilitated discussions. These discussions require preparatory readings and/or prior attendance at a public lecture on campus, and students are required to attend at least one session per semester once they have been accepted into the program.

E & E SECONDARY FIELD CONTACT

Lorraine Maffeo

HUCE, Room 444A
617-496-6995
maffeo@fas.harvard.edu
The Harvard University Center for the Environment (HUCE) encourages research and education about the environment and its many interactions with human society. The most pressing problems facing our natural environment are complex, often requiring collaborative investigation by scholars versed in different disciplines. The Center draws its strength from faculty members and students across the University who make up a remarkable intellectual community of scholars, researchers, and teachers of diverse fields including chemistry, earth and planetary sciences, engineering and applied sciences, biology, public health and medicine, government, business, economics, religion, design, and law. By connecting scholars and practitioners from different disciplines, the Center for the Environment seeks to raise the quality of environmental research and teaching at Harvard and beyond.

GET CONNECTED
Stay connected to the Center’s news and events at www.environment.harvard.edu, including a mailing list and weekly events calendar, social media platforms, and an annual newsletter.
Through a variety of programs and funding opportunities, the Center connects people and supports research related to the environment at every level, from undergraduates through senior faculty members. The following resources may be of particular interest to undergraduate students:

Secondary Field in Energy And Environment

The Environmental Science and Public Policy Concentration, in coordination with HUCE, offers the secondary field in Energy and Environment (E&E) to increase Harvard students’ exposure to, and literacy in, the interconnecting set of issues related to energy and the environment while maintaining their focus in their home concentrations. Students from a broad spectrum of concentrations identify the obstacles, highlight the opportunities, and define the discussion for an energy-environment strategy for the 21st century and beyond. To learn more or apply, visit: www.espp.fas.harvard.edu/energy-environment.

Summer Undergraduate Research Fund

Students can apply for the Summer Undergraduate Research Fund, which provides financial support for independent student research projects and faculty research assistantships related to energy and the environment. Award amounts are usually between $500-$3,500. To learn more about funding sources, visit: www.environment.harvard.edu/summer-undergraduate-research-fund-0.

Environmental Course Guide

HUCE annually updates the *Environmental Course Guide*, a list of Harvard courses most relevant to energy and environmental studies. The *Course Guide* is searchable by keyword, school, research area, and semester. Visit www.environment.harvard.edu/course-guide to access the guide.

HUCE Lecture Series and Special Events

HUCE hosts a number of lecture series, symposia, conferences, and special events each academic year. To watch videos from past talks, visit www.environment.harvard.edu/videos. To learn more about energy and environmental events at Harvard and the Greater Boston area, visit: www.environment.harvard.edu/events/calendar/list.

Faculty Associate Directory

Nearly 250 Harvard faculty from a variety of disciplines are affiliated with HUCE. As leading scholars in their fields, they provide expert knowledge on a number of energy and environmentally-related topics. The database of Faculty Associates, available on our website, is searchable alphabetically, by research area, school, department, and keyword: www.environment.harvard.edu/people.
How to Find Us

EPS
Hoffman Laboratories
20 Oxford Street
Cambridge, MA 02138
617-384-9760
esps.harvard.edu

ESE
Harvard John A. Paulson School of Engineering and Applied Sciences
Pierce Hall
29 Oxford Street
Cambridge, MA 02138
617-495-1246
seas.harvard.edu/programs/engineering/environmental-science-and-engineering

ESPP
Harvard University Center for the Environment
26 Oxford Street
Fourth Floor
Cambridge, MA 02138
617-496-6995
espp.fas.harvard.edu

E&E
26 Oxford Street
Fourth Floor
Cambridge, MA 02138
617-496-6995
espp.fas.harvard.edu/energy-environment

IB
BioLabs 1082
16 Divinity Avenue
Cambridge, MA 02138
617-495-0684
lifesciences.fas.harvard.edu/ib

©2021 President and Fellows of Harvard College