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Ramp compression of diamond to five terapascals
R. F. Smith1, J. H. Eggert1, R. Jeanloz2, T. S. Duffy3, D. G. Braun1, J. R. Patterson1, R. E. Rudd1, J. Biener1, A. E. Lazicki1, A. V. Hamza1,
J. Wang2, T. Braun1, L. X. Benedict1, P. M. Celliers1 & G. W. Collins1

The recent discovery of more than a thousand planets outside our
Solar System1,2, together with the significant push to achieve inertially
confined fusion in the laboratory3, has prompted a renewed interest
in how dense matter behaves at millions to billions of atmospheres of
pressure. The theoretical description of such electron-degenerate mat-
ter has matured since the early quantum statistical model of Thomas
and Fermi4–10, and now suggests that new complexities can emerge at
pressures where core electrons (not only valence electrons) influence
the structure and bonding of matter11. Recent developments in shock-
free dynamic (ramp) compression now allow laboratory access to this
dense matter regime. Here we describe ramp-compression measure-
ments for diamond, achieving 3.7-fold compression at a peak pres-
sure of 5 terapascals (equivalent to 50 million atmospheres). These
equation-of-state data can now be compared to first-principles density
functional calculations12 and theories long used to describe matter pres-
ent in the interiors of giant planets, in stars, and in inertial-confinement
fusion experiments. Our data also provide new constraints on mass–
radius relationships for carbon-rich planets.

Mass–radius data for extrasolar planets combined with equation-of-
state (EOS) models for constituent materials reveal that matter at pres-
sures of several terapascals is quite common throughout the Universe1,2,13.
At several terapascals, matter is approaching an atomic-scale pressure
(for example, the quantum-mechanical ‘pressure’ that counteracts the
electrons’ Coulomb attraction in a Bohr atom), at which material struc-
ture and chemistry, and even the properties of atoms themselves, are
expected to change11. Recent density functional theory (DFT) calculations
predict that in several materials electrons become localized at terapascal
conditions, with structural and electronic complexity unexpected from
quantum statistical models (such as that of Thomas and Fermi)12.

Experimental access to multi-terapascal conditions is now possible
with dynamic ramped compression. Dynamic compression is necessary
to achieve atomic-scale pressures, conditions far beyond those acces-
sible in static experiments14. Ramp compression produces less dissipa-
tive heating, thus enabling higher compression and lower temperature
than does shock compression15. However, ramp compression is unstable
relative to a shock because sound velocities typically increase with pres-
sure, so precise control of the applied pressure-loading history is required
to achieve high pressures without shock formation.

The National Ignition Facility, a 2-MJ laser designed to create ther-
monuclear fusion in the laboratory3, offers the energy and control nec-
essary to ramp compress matter to several terapascals. Here we describe
ramp-loading measurements on carbon to 5 TPa, with stress, density
and sound speed determined for the entire compression path. These
unprecedented conditions provide experimental constraints on the car-
bon EOS at pressures more than thirty times that of previous static-
compression measurements, and where state-of-the-art DFT coincides
with modern versions of the quantum-statistical Thomas–Fermi model,
originally developed early in the past century to describe matter at extreme
compressions.

In these experiments, 176 laser beams deliver a total peak power of
2.2 TW, with accuracy of better than 1% in power and 0.02 ns in time,
over a duration of 20 ns. The light hitting a target (indirectly) creates an

ablatively driven pressure wave in the sample (Fig. 1), and—because pres-
sure scales as the 7/8th power of the laser intensity16—the pressure is
controlled to better than 1%. Samples consist of nanocrystalline dia-
mond, shaped with steps so that the pressure-wave transit across four
different thicknesses is recorded for each experiment. Response of the
sample is characterized by velocity interferometry (VISAR), which records
the velocity of the sample’s free (back) surface as it is engulfed by the
pressure wave (Fig. 1). Iterative Lagrangian analysis is used to translate
these velocity data into a stress–density relation that quantifies the load-
ing path (Fig. 2)17. These data are absolute—not referenced against a
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Figure 1 | Velocity interferometry for ramp compressed diamond. Top,
the temporally resolved velocity interferometry record. Bottom, derived
free-surface velocity ufs versus time. The target (inset) consists of a gold cylinder
(hohlraum) 6 mm in diameter by 11 mm long, inside which the 351-nm-
wavelength laser light (purple beams) is converted to X-ray energy that is
absorbed by the diamond sample attached to the side of the hohlraum. The
X-rays ablate and ramp-compress the sample, and the free-surface velocity
is recorded for four thicknesses of diamond: 140.0mm (red line), 151.7mm
(blue line), 162.6mm (black line) and 172.5mm (green line) (see Methods).
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standard—which is important for quantifying the EOS and bench-
marking condensed-matter theories in the terapascal regime.

In detail, we initiate loading with a shock wave of approximately 0.1 TPa,
before the onset of the main ramp compression (Fig. 1). Such pre-ramp
loading of diamond produces a more fluid-like (strength-free) state18,
which is important for reducing the dissipative heating that can limit
compression. Longitudinal stress (Px)—not pressure—is shown in Fig. 2,
because our one-dimensional loading method creates a uniaxial strain
that relaxes towards an isotropic state.

A typical record (Fig. 1) shows a free-surface velocity profile ufs(t),
characterized by an initial shock to 4.1 km s21, followed by a fast rise and
plateau at 7.2 km s21, and subsequent ramp compression to 46.6 km s21

(3.7 TPa). Our analysis yields the Lagrangian sound speed (CL) and Px

as functions of density r from the measured ufs(t) (Fig. 2)17. In all, three
experiments yielded CL(r) and Px(r) to peak stresses of 2.7 TPa, 3.7 TPa
and 5 TPa, respectively. CL decreases abruptly at ufs 5 4.1 km s21, cor-
responding to a longitudinal stress of Px, limit 5 0.11 TPa, which we inter-
pret to be the dynamic strength (elastic limit) of diamond. This also shows

up as the slight deviation in the stress–density relation near 0.11 TPa
(Fig. 2, inset). Hydrodynamic simulations indicate that the rapid rise
and plateau in ufs(t) at 7.2 km s21 corresponds to a reverberating com-
pression wave within the intermediate Au layer (Fig. 1).

These new data are compared to several carbon EOS models in the
multi-terapascal regime (Fig. 2, Extended Data Fig. 1, Extended Data
Table 1, and Methods). A cold curve derived from first-principles DFT12

is in good agreement with a Mie–Grüneisen reduction and extrapola-
tion of shock-Hugoniot data collected to 2 TPa. Also shown are the cold
curve formulations from Vinet19 and Birch–Murnaghan20 each fitted to
existing diamond anvil cell data21,22. (Even at these extreme pressures,
the differences between the room-temperature isentrope and isotherm
and the cold curve (0 K) are indistinguishable on this scale, so for con-
sistency, we refer below simply to the cold curve.) For reference, the
Hugoniots calculated from both DFT (solid red line) and a Mie–Grüneisen
model (solid orange line) are shown in Fig. 2b. The DFT Hugoniot pre-
dicts carbon to be liquid and much less compressible than the DFT cold
curve for stresses above about 1 TPa. The differences between the cold
curves (grey band) and Hugoniots (orange band) in Fig. 2b illustrate
the uncertainties in using prior data for extrapolating the carbon EOS
into the terapascal regime.

The cold curve calculated by DFT shows a sequence of phase transfor-
mations: diamond to BC8 (body-centred cubic Ia�3) (at ,0.99 TPa), BC8
to simple cubic (at ,2.7 TPa)12, which are apparent in stress–density curves
as stress plateaus corresponding to increased densities (Fig. 2b). No such
stress plateaus are apparent in our data. Although phase-transformation
kinetics can smooth such features23, determining whether or not these
phase transformations occur will require further work24. Metadynamics
calculations for carbon do indicate that the diamond-to-BC8 transition
kinetics may be quite slow25.

Static compression and elasticity measurements21,22 up to their highest
pressures (0.15 TPa) are indistinguishable from the DFT cold curve and
standard EOS model fits to the data (Vinet and Birch–Murnaghan). How-
ever, when extrapolated to 5 TPa these models differ by about 20% in
density (Fig. 2 and Fig. 3, inset). Our data lie between these cold curve
calculations.

Also consistent with the DFT cold curve are the gradient-corrected
(TFD-W) and the gradient-and-correlation-corrected (TFD-Wc) Thomas–
Fermi–Dirac EOSs between about 2 TPa and 5 TPa (Fig. 2)9. This agree-
ment is notable because the statistical-atom model considers neither
crystal structure nor orbital information, whereas DFT includes both.
This agreement may be partly fortuitous, because carbon might not yet
be in its densest crystal structure at these pressures, and the deviation
of statistical-atom theories is towards predicting densities that are sys-
tematically too low.

Our ramp data achieve higher density than the shock Hugoniot, con-
sistent with temperatures being lower for ramp compression versus shock
compression15,26. Moreover, these new data are somewhat less compress-
ible than cold-isothermal compression calculations with DFT over most
of the pressure range studied, and modern Thomas–Fermi–Dirac for-
mulations (TFD-W and TFD-Wc). We expect that the overlap of the
ramp compression data with the older uncorrected Thomas–Fermi–
Dirac data in the 2–3 TPa regime is fortuitous. Sample temperature, mate-
rial strength18 and phase transformation kinetics23 can each cause a less
compressible stress–density path with respect to the cold curve, so these
data should be considered an upper bound for such comparison. Indeed,
further study is needed to obtain a better understanding of the differences
between theory and experiment and to develop measurement techniques
(such as for temperature and structural determination) with which to
explore this new extreme matter regime.

The experimental techniques developed here provide a new capability
to experimentally reproduce pressure–temperature conditions deep in
planetary interiors. Carbon is the fourth most abundant element in the
cosmos and has a potentially important role in many types of planets,
both within and outside the Solar System. One proposed group of super-
Earth exoplanets (1–10 Earth masses in size) are those enriched in carbon,

160

120

80

40

C
L
 (
k
m

 s
–
1
)

0 10 20 30 40 50

ufs (km s–1)

 Average all NIF shots

Cbulk

Clongitudinal

5.54.53.5

Density (g cm–3)

Neptune

0.2

0.4

0.6

S
tre

s
s
 (T

P
a
)

5

4

TF

TFD

NIF

DAC

D
FT

 c
ol

d 
cu

rv
e

TFD-W

TFD-W
c

3

2

1

0

S
tr

e
s
s
 (
T

P
a
)

1210864

Density (g cm–3)

D
FT

 c
ol

d 
cu

rv
e

D
F

T
 H

u
g

o
n
io

t

 NIF data

b

a

Saturn

Earth

Figure 2 | Ramp compression stress and sound velocity measurements.
a, Lagrangian sound velocity CL versus density. b, Longitudinal stress Px versus
density. Three experiments (pink, light-green and grey lines) yield CL data
and their average (dark blue line), which are used to determine Px–density17

(dark blue line in b). Error bars, 1s. Model comparisons include DFT (solid
red line)10 and Mie–Grüneisen (solid orange line) Hugoniots (density
correction discussed in Methods); cold curves from DFT12 (red dashed line),
statistical-atom models (TF, TFD, TFD-W and TFD-Wc as green dotted, short
dashed, long dashed and solid lines)9, and Vinet19 (grey dot-dashed line)
and Birch–Murnaghan20 (grey dashed line) EOS fits to static data21,22.
Pressure-scale-corrected21 static diamond anvil cell (DAC) data22 are green
circles. Shaded regions between cold curves (grey) or Hugoniots (orange) show
roughly the range of uncertainty in the EOS in this terapascal regime. Central
pressures for Earth, Neptune and Saturn are shown for reference. The inset
highlights the differences in the models at low pressure.
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and the planet 55 Cancri e has been proposed as a possible carbon planet27.
Figure 3 shows mass–radius relationships for selected known super-
Earths together with various hypothetical uniform-composition planets,
including a pure-carbon planet based on our ramp-compression EOS.
Using our new data, we find the central pressure for a 10-Earth-mass pure-
carbon planet to be about 0.8 TPa. This new capability to reach multi-
terapascal pressures also enables experimental access to Jupiter’s core
pressures28 where extrapolations of earlier shock and static data become
unreliable (Fig. 3, inset).

Our results also have relevance for large pulsar planets, such as the
companion of millisecond pulsar PSR J1719-1438 (ref. 29). This object
has a minimum mass somewhat larger than Jupiter (1.15 3 1023 solar
masses or 383 Earth masses), and a 2.2-hour orbital period. A carbon-rich
composition was suggested, based on TFD-Wc results for carbon9,29. The
reliability of this form of TFD theory as shown by our experiments sup-
ports this interpretation. An extrapolation of our EOS is consistent with
TFD-Wc in suggesting that an object of this mass made of pure carbon
would have a radius of about 4.5 Earth radii and a central pressure of
about 148 TPa. The mean density of 23 g cm23 is compatible with the
measured minimum density of the pulsar planet29.

In summary, diamond, the least compressible material known, has
here been compressed to an unprecedented density of 12 g cm23, more
than that of lead at ambient conditions. The measured Lagrangian sound
speed, stress and density provide the first experimental data for con-
straining condensed-matter theory and planet-evolution models in the
terapascal regime. By realizing three necessary conditions—(1) the adia-
batic conditions of dynamic compression; (2) a loading profile soft enough
to avoid shock formation; and (3) a nearly fluid-like response of the sample
such that strength and dissipation are minimal—these experiments doc-
ument an approach for taking solids to the long-sought high-density con-
ditions of statistical-electron theory.

METHODS SUMMARY
Experiments used 176 laser beams from the National Ignition Facility (NIF) (in
Livermore, California, USA) focused onto the inner walls of a gold hohlraum (a
gold cylinder that converts the laser light to X-rays) with a combined laser energy
up to 0.76 MJ in a ,20-ns temporally ramped pulse. This generates a spatially uni-
form near-blackbody distribution of thermal X-rays in the hohlraum with a charac-
teristic radiation temperature Tr, which increases with time to a peak of Tr < 235 eV.
The subsequent X-ray ablation of the diamond, over a 3-mm diameter, produces a
uniform ramp-compression wave, which outruns the thermal wave produced by
ablation. As the pressure wave reaches the back surface of the diamond the free sur-
face velocity of each step is recorded with an imaging velocity interferometer (Fig. 1).

Samples consist of a 50-mm-thick diamond plate used as an ablator, a 10-mm Au
layer preheat shield, and a diamond sample having four steps (Fig. 1 inset). The dia-
mond was synthesized by chemical vapour deposition to yield a layered microstruc-
ture with an average grain size of 200 nm and a density of 3.2491 g cm23 (60.01%).
The final sample had alternating 0.35-mm layers of 20-nm grains and ,350-nm
grains. X-ray diffraction showed a ,110. texture in the growth direction. The thick-
ness of the composite sample is determined to 61.0mm, and the differences in step
thickness are determined by optical interferometry to 60.1mm. The Au layer was
incorporated into the target design to serve as a radiation preheat shield for the step
diamond sample. Detailed radiation transport simulations estimate a temperature
rise of 33 K due to X-ray preheating.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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METHODS
Ramp-compression design to terapascal pressures. The inner wall of a gold hohl-
raum (a gold cylinder used to convert laser light to X-rays) was illuminated with
176 beams of the NIF with a combined energy up to 0.76 MJ in a ,20-ns tempor-
ally ramped pulse. This generates a near-blackbody distribution of thermal X-rays
with a characteristic radiation temperature Tr, which increases with time to a peak of
Tr < 235 eV. The hohlraum was filled with 0.1 atmosphere of neopentayne (C5H12)
gas, which enabled the hohlraum cavity to stay open so that input laser power could
be coupled effectively at late times. The C5H12 gas was held within the hohlraum
by 0.6-mm-thick polyimide windows covering the laser entrance holes. The X-ray
ablation of diamond produces a uniform ramp-compression wave that transits the
diamond sample. As the compression wave reaches the back of the sample, the sur-
face accelerates into free space, and the free-surface velocity history ufs for each step
is recorded with a line-imaging velocity interferometer (VISAR) (Fig. 1). Our laser
pulse shape is designed to launch an initial elastic shock into the diamond sample
in advance of the ramp-compression wave. This shock feature—observed in the
free-surface velocity record at ufs 5 4.1 km s21 (Fig. 1) and corresponding to Px, limit

5 0.11 TPa—is interpreted as the dynamic strength (elastic limit) of diamond. The
corresponding dynamic yield strength Y0 is determined from Y0 5 Px, limit(1 2 2n)/
(1 2 n), with the Poisson’s ratio, n 5 0.18, derived from our sound-speed data

(Fig. 2a) from
Clongitudinal

Cbulk

� �2

~3
1{n

1zn

� �
. This yields Y0 5 0.085 TPa, which is

less than observed in static experiments31 (Y0 5 0.13–0.15 TPa) but consistent with
the values 0.069 TPa, Y0 , 0.096 TPa reported for ramp compression of diamond
with micrometre grain size32. The presence of an initial shock results in a loss of
diamond strength18, with expected lower levels of compressive work heating over
pure ramp compression32 and, therefore, a lower-temperature compression path.
Target design. Our samples consist of a 50-mm-thick diamond plate used as an
ablator, a 10-mm-thick Au layer preheat shield, and a diamond plate having four
steps (Fig. 1, inset). The diamond was synthesized by chemical vapour deposition
to yield a layered microstructure with an average grain size of 200 nm and a density
of 3.2491 g cm23 (60.01%)33, 34. The final sample had alternating 0.35-mm-thick
layers of 20-nm grains and ,350-nm grains. X-ray diffraction showed a ,110.

texture in the growth direction. The thickness of the sample is determined to 61.0mm,
including uncertainties in the diamond ablator and Au thicknesses, whereas the
differences in step thickness are determined by optical interferometry to 60.1mm.
The diamond sample was then attached to the Au with a ,3-mm-thick glue layer.
The Au layer was incorporated into the target design to serve as a radiation preheat
shield. Detailed radiation transport simulations estimate a temperature rise of
33 K, due to X-ray preheating.
Velocity interferometry. The response of the sample is characterized by velocity
interferometry (VISAR), which records the velocity of the sample’s free (back) sur-
face as it is engulfed by the pressure wave (Fig. 1). The VISAR (Velocity Interfer-
ometer System for Any Reflector) diagnostic uses a line-focused 660-nm-wavelength
laser beam to monitor a ,1-mm strip across all four steps of the sample35. Changes
in velocity of the diamond free surface produce phase shifts in interference fringes
that are recorded with a streak camera (Fig. 1). A typical VISAR record has a 30-mm
spatial resolution, a 10-ns streak window with 0.01-ns resolution, and a velocity
resolution of 0.1 km s21.
Stress–density analysis. Iterative Lagrangian analysis is used to translate these veloc-
ity data into a stress–density relation that quantifies the loading path (Fig. 2)17,36.
The Lagrangian analysis method developed by Aidun and Gupta36 and modified
by Rothman17 was used to determine the Lagrangian sound speed CL(u) and the
stress–density (Px 2 r) relation from the measured ufs(t) data, where u is the par-
ticle speed, and ufs is the sample’s free surface velocity (across each of four thick-
nesses). Metrology of the sample surface showed that the roughness was ,0.1mm,
thickness gradients were ,1%, and step heights were accurate to within 0.1mm. In
all, three shots gave CL(u) and Px 2 r data. CL(u) and its uncertainty sCL uð Þ are
obtained from thickness and velocity-versus-time data by linear regression using
errors determined by our measurement accuracies: ufs (0.05 km s21), time (10 ps),
and step height (100 nm). The uncertainty is propagated by calculating the weighted

mean average of all three shots, CL uð Þ~
P

j

CL,j

s2
CL,j

=
X

j

1
s2

CL,j

�����
u

, as shown by the blue

curve in Fig. 2a, where j is the shot number. The uncertainty in the average value is
chosen from the maximum of the uncertainty in the mean and the weighted standard

deviation. CL(u) andsCL are integrated toobtainPx~r0

Ðu
0

CLdu,r~r0 1�
Ðu
0

du
CL

� ��1

,

and their uncertainties sPx ~r0

Ðu
0

sCL du and sr~
r2

r0

ðu
0

sCL

C2
L

du. Uncertainties are

propagated though the integrals linearly, rather than in quadrature, because sCL

appears to be strongly correlated rather than random. This method of uncertainty

propagation allows the direct propagation of experimental uncertainties to Px 2 r.
Sound speed analysis over the three steps (four thicknesses) show simple wave
behaviour, suggesting that the material response is not time-dependent within the
experimental uncertainties.

Release waves from the diamond-vacuum interface significantly perturb the incom-
ing ramp wave. Extensive tests using simulated data confirm that the iterative Lagrang-
ian analysis accurately corrects for these wave interactions.
Mie–Grüneisen Hugoniot and cold curve. We compare our stress–density data
(Fig. 2b and Extended Data Fig. 1) to a Hugoniot and cold curve reduced from avail-
able diamond Hugoniot data. There are several ways to construct a Mie–Grüneisen
EOS, and here we begin with the relation for the pressure relative to a reference
pressure Pref

P g,Eð Þ~Pref gð Þzr0gc E{Eref gð Þð Þ ð1Þ

where g~
r

r0
is the compression, c is the Grüneisen parameter (assumed to depend

only on density) and r0 is the initial density. We can use either the Hugoniot or
isotherm data to determine the reference states. Here we use the diamond Hugoniot
data as the reference using a linear fit to existing shock velocity versus particle
velocity data18,37–40

Us~CzsUp ð2Þ
where C 5 12.0 km s21 and s 5 1.04. From this we obtain

Pref gð Þ~PH gð Þ~r0g
C2 g � 1ð Þ

g � s g � 1ð Þð Þ2
ð3Þ

Eref gð Þ~EH gð Þ~ C2 g � 1ð Þ2

2 g � s g � 1ð Þð Þ2
ð4Þ

where PH gð Þ and EH gð Þ are the Hugoniot pressure and energy, respectively. Finally,
from equation (1) we obtain the cold curve

P0 gð Þ~r0g
C2 g{1ð Þ

g{s g{1ð Þð Þ2
zc E0{

C2 g{1ð Þ2

2 g{s g{1ð Þð Þ2

 ! !
ð5Þ

where we solve for E0 gð Þ by

dE0

dg
~

1
r0g2

PHzr0cg E0 � EHð Þð Þ

~
1
g

C2 g � 1ð Þ
g � s g � 1ð Þð Þ2

zc E0�
C2 g � 1ð Þ2

2 g � s g � 1ð Þð Þ2

 ! ! ð6Þ

It is also assumed c~c0g{q, where c0 5 0.85 (ref. 21). The variable q has not been
measured at high pressure, and can have a significant impact on the cold curve
determined. We find that a value of q 5 1 yields a cold curve centred on the DFT-
calculated cold curve12. This value of q is consistent with static measurements at pres-
sures ,0.1 TPa (ref. 21). This simple model for calculating the cold curve does not
incorporate volume changes from proposed high-pressure phase transformations.
Calculation of 7.6% porous Hugoniot. The calculation is as shown in Fig. 2 and
Extended Data Fig. 1. Our samples had a measured ambient density of 3.249 g cm23

which is 7.6% below full crystal density. To calculate the stress-density path of a
7.6% porous Hugoniot we use the expression of McQueen41

P�x rð Þ~PH

1{ c=2ð Þ r

r0
{1

� �

1{ c=2ð Þ r

r�0
{1

� � ð7Þ

where P�x rð Þ is the stress state along the porous Hugoniot at a density r, r0 is the
initial full crystal density (3.515 g cm23), r�0 is the initial porous density (3.249 g cm23)
and c rð Þ is the Grüneisen parameter. We note that implicit within the porous Hugoniot
expression in equation (7) is that the wave is steady and the pores have collapsed
completely in the post-shock state, that is, P�x rð Þ5 0 for r�0? r0; an assumption
which is incorrect for diamond. Equation (7) is therefore a poor estimate for weak
shocks but in cases where the shock pressure greatly exceeds the material strength
(after the pores have closed) it is reasonable.

Upon compression, the material strength determines how much stress is needed
to reduce the porosity to a given level. This relationship can be summarized in a
crush-up curve: r 5 r(r�0,P�x ,E)42–44. Following Carroll and Holt43, pore crush-up is

only initiated after a critical longitudinal stress, Pcrit~
2
3

Y0 ln f0j jwhere Y0 is the yield

strength and f0 is the initial porosity. For our diamond samples Y0 5 0.085 TPa,
f0~r�0=r0 5 0.076 and Pcrit 5 0.146 TPa. For 0ƒPƒPcrit, the pressure-dependent
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pore fraction f ~f0 and the material is assumed to deform elastically. For PwPcrit,
the porosity decays exponentially as f ~e{3Px=2Y0 .

A number of studies on shock compression of under-dense materials have shown
that rapid heating due to pore closure and the resultant increase in thermal pressure
gives rise to reduced compression41. In Extended Data Fig. 1 this is witnessed by the
stiffer response of the calculated porous Hugoniot compared to the Hugoniot for
full-density diamond.
Diamond EOS data and DFT calculations. Extended Data Fig. 1 compares our data
(initial density r0 < 3.249 g cm23) with previously reported shock Hugoniot18,37–40,
static22, and ramp compression32 data (r0 < 3.515 g cm23) as stress versus density.
Shock Hugoniot data rely on knowledge of a reference material and therefore sub-
sequent revisions of the reference EOS can change the reported diamond Hugoniot
data. The Hugoniot points shown in Extended Data Fig. 1 have been reanalysed to
account for new standard EOS as follows: The data reported by Nagao38 and four of
the high pressure points of Hicks40 (open pentagons) used aluminium as a standard
and were reanalysed using impedance matching45 with the latest fit to the aluminium
Hugoniot46. The highest pressure point of Hicks used a Mo standard and remains
unchanged. Additional data reported by Hicks40 and data reported by Brygoo39 used
a quartz standard. These data have been reanalysed using the constant Grüneisen
re-shock model in ref. 40 and the quartz Hugoniot used as a reference is a fit of all
available data for quartz shocked into the liquid phase46,47.

The DFT EOS we use to produce the Hugoniot in Fig. 2 and Extended Data Fig. 1 is
as reported10, except without the embedding into the Thomas–Fermi-based quotidian-
EOS (QEOS) model. We omit the connection with the QEOS model because the
transition region between ab initio and QEOS models in ref. 10 created unphysical
kinks in the EOS and resulting Hugoniot. The extrapolation of the more limited-
range ab initio EOS of ref. 10 to the conditions relevant for the Hugoniot final states
shown in our figures is expected to be quite accurate48. The DFT cold curve generated
from ref. 10 is in good agreement with the DFT cold curve reported in ref. 12 (red
dashed curve in Fig. 2 and Extended Data Fig. 1) for stresses less than 2.5 TPa (which
is the pressure below which ab initio electronic structure information was used to
construct that EOS).

Static-compression and elasticity measurements to 0.15 TPa are indistinguishable
from the cold curves presented here21,22. The fit to the static compression measure-
ments over this low compression range (r/r0 < 1.18) are insensitive to the form of
EOS used to fit the data (for example, Vinet19, Birch–Murnaghan20, or Holzapfel49).
The Vinet EOS plotted in Fig. 2 and Extended Data Fig. 1 use K0 5 445 GPa and
K90 5 4.18 as reported in ref. 21. The values used for the Birch–Murnaghan (K0 5

445 GPa, K90 5 3.90(0.04)) and Holzapfel (K0 5 445 GPa, K90 5 3.95(0.05)) forms
of EOS are based on fits to previous isothermal data21,22. Here the values from ref. 22
have been reanalysed using the revised ruby pressure scale as reported in ref. 21.
Extrapolating these isothermal data to the multi-terapascal regime becomes highly
uncertain depending on the EOS used (Fig. 2b and Extended Data Fig. 1).

Although temperature was not measured in these experiments, it is useful to com-
ment on such estimates from theoretical calculations. The temperature calculated

from DFT along the diamond principal isentrope is quite low even at the most extreme
compressions studied here (,600 K to 700 K at multi-terapascal pressures). For
this reason, the principal isentrope and the room-temperature isotherm are pre-
dicted to be nearly coincident in stress–density space. It is certainly possible that
our ramp compression path have higher temperatures than these isentrope pre-
dictions and this may be responsible for the higher stress versus density. However,
because temperature, material strength18, and phase transformation kinetics23 can
each cause a stiffer response with respect to the isentrope, current estimates for the
ramp compression temperature into the terapascal regime are quite speculative.
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Extended Data Figure 1 | Ramp-compressed diamond stress versus density
compared to other high-pressure data. NIF ramp-compression data with 1s
error bars (solid blue line) together with calculated Hugoniots (low-initial-
density diamond, solid red line; standard-initial-density diamond, dotted red
line) and the calculated cold curve (dashed red line)12 from DFT; a simple
Mie–Grüneisen model reduction of Hugoniot data to produce an extrapolated
Hugoniot (low-initial-density diamond, solid orange line; standard-initial-
density diamond, dotted orange line), and cold curve (dashed orange line);
Vinet19 (dot-dashed grey line), Birch-Murnaghan20 (dashed grey line), and
Holzapfel49 (dotted grey line) extrapolations of 300-K diamond anvil cell
data21,22. The shaded regions show the range of different models for cold curve

(grey) and Hugoniot (orange) showing roughly the range of uncertainty in this
ultrahigh-pressure regime. Also shown are data from shock experiments
(yellow circles37, up triangles38, open pentagons (which used an Al or Mo
standard)40, down triangles39, blue pentagons (which used the more accurate
quartz standard)40, open squares18), isothermal static data (green circles are
ruby-corrected data21,22) and the ramp-compression data of Bradley32 (solid
grey line). The ramp-compression data of Bradley used full-density diamond
and did not use an initial shock as in NIF data. The inset shows the calculated
stress–density relations of the three NIF shots: N110308, N110516 and
N110524, showing the level of repeatability between experiments.
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Extended Data Table 1 | Ramp-compressed diamond stress–density data

Tabulated data showing stress (Px), stress uncertainty (sPx ), density (r) and density uncertainty (sr). All uncertainties are 1s.
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