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Abstract

Anthropogenically-induced ocean heat uptake is an important climate variable, whose fu-
ture value has implications in the expected pattern of sea-level rise, climate sensitivity, and
extreme weather events. However, trends in ocean heat content (OHC) due to forcing are
difficult to detect. As a result of its large thermal mass, the three-dimensional ocean heats
slowly, whereas the near-surface ocean experiences great variations in temperature on annual
and interannual timescales. Fingerprinting is a useful technique for identifying a weak signal
amidst noisy data. It has been used successfully for detection of anthropogenic influence in
a variety of climate variables, such as near-surface air temperature, sea surface temperature,
and sea ice extent. OHC is therefore a promising potential application for this technique,
yet horizontally-sliced fingerprinting on three-dimensional OHC has not been attempted.
An optimal fingerprint analysis is applied on 100 years of synthetic historical OHC data
from the ACCESS-ESM1-5 climate model from the time period 1850-1900 and 15 years
of Argo data 2004-2018, on 15 5-degree-gridded constant-pressure level surfaces in the up-
per 2000m. We propose a modified fingerprinting approach in which the primary modes of
thermal variability— those caused by the annual cycle and ENSO—are controlled for before
the fingerprint is computed.We derive an optimal fingerprint for detecting change in OHC
in 34 pressure levels in the upper 2000m of the ocean. We find that the optimal fingerprint
forOHChas strongly positive coefficients in the western Pacific; this can likely be ascribed to
the the relative quiescence of this region. Despite a generally positive trend, the optimal fin-
gerprint is characterized by negative coefficients in the upper North Atlantic. The optimal
fingerprint resembles the anticipated signal direction increasingly with depth, highlighting
the value of examining three-dimensional OHC. We compute optimal detection variables
corresponding to these fingerprints, and determine that the upper 2000m has seen instances
significant increase in heat content over the last 15 years.

1



Contents

1 Introduction 3
1.1 Ocean heat content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Why care about ocean heat content? . . . . . . . . . . . . . . . . . . . . 4
1.3 Measuring changes in Ocean Heat Content . . . . . . . . . . . . . . . . . 7
1.4 Optimal Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Optimal Fingerprinting 12
2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 An example: detecting climate change in atmospheric temperature . . . . . 14

3 Application of fingerprinting to ocean heat content 18
3.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 Computation of optimal fingerprint . . . . . . . . . . . . . . . . . . . . 26

4 Results and discussion 31
4.1 Computed optimal fingerprints . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Detecting a time-dependent uptake of ocean heat . . . . . . . . . . . . . . 40
4.3 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Conclusion and future directions 42
5.1 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

References 48

2



Acknowledgments

I am deeply grateful to several people, without whom this work would not exist. First and
foremost, I would like to thank Peter Huybers for his unwavering support and constant flow
of endlessly helpful suggestions, questions, and ideas. He was infinitely generous with his
time and greeted my incessant pestering with nothing but warmth, despite his busy research
schedule.

I would also like to extend my gratitude to Carl Wunsch for helping to advise this thesis,
and for his very helpful feedback on my first draft. I knew next to nothing about oceanogra-
phy before embarking on this project, and Carl’s guidance was immensely helpful in getting
me up to speed.

Thanks as well to the rest of the Huybers group– especially Duo Chan and Charlotte
Dyvik Henke– for their support and assistance, and for many helpful discussions which
greatly informed my research.

There are several students I would like to thank: Candice Chen, for very kindly helping
me to learn climate science as a complete beginner, and for providing helpful suggestions
when I foundmyself blocked inmy research. AlexChin, for nonstop advice about how to do
research, tips on handling large matrices on a small computer, and unconditional emotional
support. And Rajath Salegame, for entertaining my frequent questions about Python and
data science in general.

Thanks as well to the AppliedMath department, and especiallyMargo Levine, for helping
me to organize my thoughts around my decision to write a thesis, and for helping me in the
process of choosing an advisor.

Finally, Iwould like to expressmydeepest thanks and gratitude tomyparents andmyentire
family, for supporting me without hesitation in my academic endeavours.

3



Listing of figures

1.1 Spatial patterns in historical rate of sea level rise. . . . . . . . . . . . . . . . 5

1.2 Standard deviation of annual mean temperature at 500m. . . . . . . . . . 8

1.3 Optimal fingerprint of near-surface air temperature based on 30-year trends. 10

2.1 Optimal fingerprints for a two-dimensional climate variable space . . . . . 16

3.1 Covariances of selected points . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Primarymodes of variability inheat content observational data at 0m, 100m,

200m, 500m. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 (Detail) primary modes of annual variability at 0m . . . . . . . . . . . . . 23

3.4 Signal strength at 0m, 100m, 200m, 500m . . . . . . . . . . . . . . . . . 24

3.5 ENSO3.4 Index and its Hilbert Transform . . . . . . . . . . . . . . . . . 26

3.7 Depths at which optimal fingerprint is computed . . . . . . . . . . . . . . 28

4.1 Optimal Fingerprints at 0m, 100m, 200m, 500m . . . . . . . . . . . . . . 33

4.2 Fingerprints with and without ENSOMLR . . . . . . . . . . . . . . . . 35

1



4.3 Correlation of MLR- and de-trend fingerprints with signal and ENSO . . . 37

4.4 Detection Variable Strength . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Depth-dependence of detection variables . . . . . . . . . . . . . . . . . . 39

4.6 Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2



1
Introduction

1.1 Ocean heat content

The oceans are the dominant component of climatic thermal inertia on Earth. (Resplandy

et al., 2019). Not only do the oceans make up about 70% of the surface of the Earth, but

also the physical properties of oceans allow for greater heat absorption than land. Water has a

higher specific heat than themost of the land surface of Earth. In addition, because water is a
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fluid, heat thus transported to depthmuchmuchmore effectively in the oceans than on land

via convection– the ocean’s wind-drivenmixed layer can extend to several hundredmeters in

certain regions (de Boyer Montégut et al., 2004). Heat is transported to even greater depths

by physical processes such as general circulation, albeit onmuch longer timescales, which can

exceed 1000 years in certain regions (Gebbie &Huybers, 2019). As a result of these physical

properties, although oceans comprise just 70% of the surface of the planet, they have taken

up around 90% of the excess heat generated by anthropologically-induced warming (Church

et al., 2011).

1.2 Why care about ocean heat content?

Anunderstandingof the evolutionofoceanheat content is essential to forecasting theplanet’s

response to climate change. Because a large proportion of the thermal energy of the climate

system is stored in the ocean, a first-order implication of a better characterization of heat con-

tent in the ocean is an improved understanding of the way the climate as a whole responds

thermally to changes in forcing. For example, estimations of equilibrium and transient cli-

mate sensitivity could be significantly improved with a better understanding of the behavior

of OHC (Lyu et al., 2021). Ocean heat also has a meaningful influence on the patterns of ice

melt and formation, hence better knowledge of how OHC changes over time would allow

better models of such phenomena (Smith et al., 2018).
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Figure 1.1: Annual rate of sea level rise over the period October 1992 to July 2009, as determined by satellite altimetry
from Topex/Poseidon, Jason‐1 & ‐2, GFO, ERS‐1 & ‐2, and Envisat. (Nicholls and Cazenave, 2010).

1.2.1 Sea levels

Changes in ocean heat content are closely linked to the pattern of sea level rise. H2O ex-

pands in response to changes in temperature above 4◦, with a thermal expansion coefficient

of roughly 2.1e-4 *. Therefore, changes in heat content to a columnofwater–equally at depth

and near the surface–raise the level of the column of water. This phenomenon represents an

important vertical teleconnection between the deep ocean and the surface. The heating of

*It is worth noting that oceanic thermal expansion is also a function of pressure and salinity, so heat effects
are not necessarily linear.
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the oceans due to anthropogenic forcing contributes significantly to sea level rise: the global

mean thermosteric componentof sea level rise has beenmeasured at 0.5mm/yr for 1955-2010,

accounting for around 30% of sea level rise over that time period (Levitus et al., 2012). Re-

gional anomalies in ocean heat content, salinity, and ice melt cause spatial non-uniformity in

sea-level rise. Current annual sea-level trends vary from roughly -5mm/year to +10mm/year

(see figure 1.1)

Although it is well-established that the global mean sea level will rise over the next century

as a consequence of climate change, there is large uncertainty about the rate of this rise, aswell

as its spatial pattern (Church et al., 2013). A better understanding of the future evolution of

ocean heat content will permit greater confidence in estimates of these quantities. Given that

an estimated 1 billion people live below10melevation, with 230million of those living below

1m elevation, this could have important consequences to the global strategy of adaptation to

climate change (Kulp & Strauss, 2019).

1.2.2 Other effects of changing heat content

Ocean warming has also been shown to alter marine habitats considerably Jorda et al. (2020).

The pattern and magnitude of ocean heat content trends due to climate change therefore

carry immediate consequences in conservation. The strength of interannual climatic oscilla-

tions such as El-Niño are also believed to be affected by ocean heat content.
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1.3 Measuring changes in OceanHeat Content

Measuring the subsurface ocean is difficult. Unlike the atmosphere, light does not pene-

trate more than a few meters in the ocean, making observation by indirect means difficult.

Although regular measurement of sea surface temperatures dates back centuries, the only

source of data on subsurface ocean temperatures up until the 21st was ship-based measure-

ments, which are sparse and ultimately inadequate to construct an accurate picture of the

deep ocean (Wunsch, 2015). Scientific understanding of the deep ocean was revolutionized

in 2004 by the launch of the Argo profiling float program, an international project that de-

ploys thousands of floats that automatically measure various physical properties of interest

in the ocean, such as temperature, salinity, and pressure, and surface at regular intervals to re-

port their measurements via satellite. Unlike ship-based measurements, Argo floats provide

a high density of reliable data at depths up to 2000m.

1.3.1 Natural thermal variability in the ocean

Thanks to Argo floats, a picture of the thermal structure of the upper 2000m of the ocean

has emerged. The data have revealed complex spatial non-uniformities and high variabilities

even below the region of rapid temperature change known as the thermocline (figure 1.2).

The dynamics of thermal variability of the upper 2000m of the ocean is not entirely under-

stood. It stems from the combination of a number of interrelated processes, including cycles
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Figure 1.2: Temporal standard deviation (◦C) of annual mean temperature at 500m over the period 2004‐2018. Data
is from Argo floats. Note the well‐resolved spatial patterns: currents due to gyre circulation in the North Atlantic and
Northwest Pacific are clearly visible, as well as the circumpolar current.

of annual and interannual variability such as El Niño-Southern Oscillation (ENSO) and the

Northern Atlantic Oscillation, circulation patterns, ocean weather, and interaction with the

atmosphere (Penduff, 2018). The ocean varies appreciably on multi-decadal timescales (ex-

amples of this are the Interdecadal Pacific Oscillation and the AtlanticMulti-decadal Oscilla-

tion), making it difficult to determine average values of any ocean statistic since reliable data

have only been available for about 15 years (Wunsch, 2020). Ocean heat content in the upper

2000m represents an intricate and richly non-uniform system, both spatially and temporally.
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1.4 Optimal Fingerprinting

Optimal fingerprinting is a mathematical tool that is useful for determining the strength of

a weak signal of a known pattern in a noisy dataset. Because of the high thermal variability

of the upper ocean, and the slow rate at which the ocean warms due to external forcing, this

thesis applies this technique to horizontally-mapped three-dimensional ocean heat content.

Here, we will briefly past applications of fingerprinting to analyze weak climate variables in

large noise fields.

Optimal fingerprinting was first introduced to the field of climate science in a 1979 paper

by physical oceanographer Klaus Hasselmann†, who proposed the application of a standard

technique from signal processing theory to the problem of determining which climate vari-

ables are best suited to detecting anthropogenic climate change (Hasselmann, 1979). Hassel-

mann introduced the term “optimal fingerprinting” to this technique in a 1993 follow-up

paper (Hasselmann, 1993). An optimal fingerprint of a signal, as by Hasselmann’s descrip-

tion, is a vector in climate variable-space (i.e. the space of the possible observations that could

bemade ofmultiple climate variables, such as sea-surface temperature or atmospheric air pres-

sure) which points in the direction optimal for detection of the signal. Hasselmann observed

that this direction might not be parallel to that of the signal– for instance, in the case that

some climate variables are noisier than others (and thus should be weighted less heavily to
†A recent Nobel laureate!
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Figure 1.3: The optimal fingerprint derived by Hegerl et al. (Hegerl et al., 1996)

increase the signal-to-noise ratio). Hegerl et al. applied this technique to near-surface air-

temperature trends, computing an optimal fingerprint and using their findings to determine

claim that the probability that observed climate conditions were a result of natural variability

rather than anthropogenic influence was less than 5% (Hegerl et al., 1996).

Fingerprinting has previously beenused successfully in applications on ocean heat content.

Barnett et al. examined vertical patterns of ocean heat content change, and found statistically

significant human-inducedwarming (Barnett et al., 2004). Similarly, Glecker et al. examined

10



a large pool of observational and model-generated data to calculate optimal fingerprints for

basin-average upper-ocean temperature changes, also finding positive evidence of an anthro-

pogenic impact (Glecker et al., 2012).

Optimal fingerprintinghas alsobeen applied effectively to anumber climate variables other

than ocean heat content. Hobbs et al. uses fingerprinting to examine whether recent sea-ice

extent data can be adequately explained by internal variability (Glecker et al., 2015). Min

et al. employ fingerprinting in a study of extreme precipitation events, finding that in the

majority ofNorthernHemisphere land forwhich sufficient data is available, human influence

has contributed appreciably to such events (Min et al., 2011).
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2
Optimal Fingerprinting

2.1 Motivation

Optimal fingerprinting is a standard method for identifying a signal in a noisy dataset. We

will briefly provide a motivation for optimal fingerprinting here. Suppose we have a dataset

P of n-dimensional data P ⊂ Rn consisting of a set of observations pi ∈ P. Suppose further

that we wish to determine the magnitude of a signal ψs = cg in the dataset whose direction
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g ∈ Rn is known, butwhosemagnitude c ∈ R is not. For example, gmaybe determined from

an understanding of climate dynamics or through climate modeling. A simple approach for

computing this value from observational data is to project the observations onto the signal,

yielding a “detection variable” ds whose magnitude corresponds to the strength of the signal

in the observations:

ds = ⟨π(s, pi)⟩ (2.1)

where ⟨⟩ indicates the mean over the set of observations pi in P. This is a reasonable ap-

proach, however, it offers limited utility when the dataset P is noisy in the direction of the

anticipated signal, as in this case the detection variable will itself be very noisy. In order to

rectify this, it is desirable to weight the detection variable towards low-noise dimensions of

P.

2.2 Definition

Fingerprinting provides a rigorous way to conduct this weighting. We wish to find a vector

f ∈ R which, when our set of observations P is projected onto it, yields a detection variable

df which maximizes the squared signal-to-noise ratio for our signal s. Formally, we wish to

find f such that the quantityR2 as defined below is maximized:

R2 =
(df,ψ)2

⟨df,pi⟩
(2.2)

13



where

df,ψ = fTψs (2.3)

and

df,pi = fTpi. (2.4)

Solving (2.2) yields

f = C−1g (2.5)

where C ∈ Mn×n is the covariance matrix of the dataset P over its n dimensions Hassel-

mann (1993). The optimal detection variable d∗f is then given by

d∗f = ⟨fTpi⟩ (2.6)

The determination C can be made from observational or model data, although it is rather

difficult in practice for high-dimensional data sets as an insufficient quantity of observational

can lead to this matrix being significantly underdetermined Hegerl et al. (1996).

2.3 An example: detecting climate change in atmospheric temperature

One of the first uses of fingerprinting in climate science was towards the detection of an-

thropogenic climate change in atmospheric temperatures. Here we briefly show how finger-
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printing can be used in application to demonstrate the usefulness of maximizing the signal-

to-noise ratio.

Suppose that frommodel runs, is has been determined that anthropogenic climate change

is characterized by a warming of the troposphere and a cooling of the stratosphere, and the

ratio of their warming and cooling is expected to satisfy

x = cy (2.7)

where x is the rate of stratospheric warming in ◦C/yr (we expect that the component of x due

to climate change will be negative here), and y is the rate of tropospheric warming in ◦C/yr.

We can then think of the “direction” of the signal s ∈ R2 of climate change as [−1, c].

Now, suppose that through climate modeling, we are able to understand the structure of

the natural patterns of temperature variation in the troposphere and stratosphere. Suppose

for our example that they’re both normally distributed with a mean of 0 and variances of σ2s

and σ2t for the stratosphere and thermosphere respectively, and that they covary by q. Then,

we can write the covariance matrix of natural variability C as

C =

σ2t q

q σ2s

 (2.8)

Then, by (2.5), the optimal fingeprint for this detection problem f is given by
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Figure 2.1: Optimal fingerprint direction for the atmospheric warming example with different noise levels in each climate
variable.

f =

σ2t q

q σ2s


 1

−c

 (2.9)

=

σ2t − qc

q− σ2s

 . (2.10)

Figure (2.2) gives the direction of the optimal fingerprint for several values of σt, σs, and q.
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Observe that in the upper left panel, where each climate variable has an equal variance, the

optimal fingerprint direction coincides with that of the signal, even if the variables have some

covariance. In the bottom left and bottom right panels, observe that fingerprint is weighted

towards the direction of the variable which has a lower value of σ, indicating lower noise.

Hence, an optimal fingerprint can be understood intuitively as (and is equivalent in the case

n = 2 to) a vector in climate-spacewhose value is equal to the coefficients of the signal divided

by their “noisiness”.
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3
Application of fingerprinting to ocean heat

content

We now apply the technique of optimal fingerprinting to measurements of ocean heat con-

tent, examining 15 pressure levels in the upper 2000m. Ocean heat content proves to be

resistant to a naive application of optimal fingerprinting, due to its strong modes of interan-

18



nual variability. We thus adapt the fingerprintingmethod to the ocean by first accounting for

the major modes of oceanic thermal variability, computing fingerprints against natural vari-

ability covariance matrices with these modes subtracted. We make use of standard statistical

techniques to recover an approximate inverse of the covariance matrix of natural variability

when it is noninvertible.

3.1 Methods

We use data generated by the ACCESS-ESM 1-5 climate model to estimate the covariance of

natural ocean variability and determine the anticipated signal of ocean heat content change

from amultiple linear regression onArgo data, estimating the inverse covariancematrix with

linear algebraic techniques. We further refine our fingerprint by accounting for strongmodes

of natural variability inmodel data, and provide estimations of the optimal climate detection

variable at depth levels ranging from 0-2000m.

3.1.1 Data

Observational data used to compute the optimal fingerprint is obtained from theRoemmich-

Gilson Argo monthly temperature and salinity climatology, years 2004-2018. Years 2018-

2021 are omitted to ensure the principal modes of thermal variability are accurately deter-

mined for all years in our observational period (see section4). Potential temperature at depths

0-2000m is calculated from Argo temperature, salinity, and pressure means and anomalies.
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Figure 3.1: Covariances of two representative points in residuals from multiple‐linear‐regressions performed on Argo
observational data and ACCESS model data. Their similarity indicates the skill of the ACCESS‐ESM‐1.5 model for our use
case.
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Potential temperature data is then averaged to 4.5 × 5 degree longitudinal/latitudinal reso-

lution and annualized. This resolution was chosen due to computational constraints. Lati-

tudes above 65 ◦ N and below 65 ◦ S are omitted. Data is regridded longitudinally and verti-

cally to align with model data.

Model data used in the computation of an optimal fingerprint is obtained from historical

forced simulations 1850-2020 from the ACCESS-ESM1-5 model (Australian Community

Climate and Earth System Simulator), a member of CMIP6 (Ziehn et al., 2019) The AC-

CESS model was chosen due to its large number of model runs, which is a necessary for a

sufficiently determined error covariance matrix of natural variability. The ocean dynamics

in the ACCESS model are sourced from the GFDL MOM5 ocean model. Only data from

1850-1900 is considered, as the purpose of the model data for our application is to simulate

unforced natural variability. Early historical forced data is used rather than unforced sim-

ulations (of which some are available from ACCESS) because more model runs are readily

available of the forced simulation. As with Argo data, temperature data is averaged to 4.5

× 5 degree longitudinal/latitudinal resolution and annualized. Latitudes above 65 ◦ N and

below 65 ◦ S are omitted.

3.1.2 Modes of ocean thermal variability

In order to generate a useful covariance matrix of ocean temperatures for our fingerprint,

the most powerful modes of ocean thermal variability must be accounted for. The primary
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Figure 3.2: Three largest modes of variability, as determined by singular value decomposition, on monthly Argo data (n
= 180) gridded at 4.5x5 degrees lat x long. The annual cycle clearly accounts for the strongest mode in the near‐surface
ocean, but its influence is significantly weaker below the mixed layer. ENSO accounts for the remaining modes in the
near‐surface ocean. At 500m, the influence of ENSO is also less prominent, although it is still visible.

modes of ocean thermal variability were determined via singular value decomposition of

monthly Argo temperature timeseries data at each pressure level. The primarymodes of vari-

ability are depicted in figures 3.2 and 3.3. The main patterns of thermal variability appear

to agree with the annual cycle and ENSO. Hence, in order to control for these modes when

performing our fingerprint, we first annualize the data and then regress ocean heat content

against ENSO3.4, which is a typical proxy for the strength of ENSO in a given month, the

Hilbert transform of ENSO3.4, and linear time. We model the potential temperature θ of a

given location as a function of time as
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Figure 3.3: The four largest modes of annual variability at the ocean’s surface, determined by singular value decomposition,
on monthly Argo data (n = 180) gridded at 4.5x5 degrees lat x long.

θ(t) = (a1 × t) + (a2 × E) + (a3 ×H) + e(t) (3.1)

whereE is the cf the ENSO3.4 index,H is the value of theHilbert transform of the ENSO3.4

index, a1 corresponds to the time coefficient of regression, a2 corresponds to theENSO3.4 co-

efficient of regression, and a3 corresponds to the Hilbert-transformed-ENSO3.4 coefficient

of regression. The ENSO3.4 index is computed in the usual way, as the 3-month rolling

average of the mean sea surface temperature of the region 120◦ W-170◦ W, 5S◦-5N◦.

3.1.3 Computing theHilbert transform of ENSO3.4

TheHilbert transform is amethod originating in the field of signal processing that computes

a signal whose components are all phase shifted by ± 90◦ relative to its input. The Hilbert
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Figure 3.4: Signal strength computed at 0m, 100m, 200m, 500m from multiple‐linear against time trends, ENSO3.4 index
coefficient, and the hilbert transform of the ENSO3.4 index.
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transform of a time-dependent signal u(t) is defined as

H(u(t)) =
1
π
p.v.

∫ ∞

−∞

u(τ)
t− τ

dτ (3.2)

where p.v. indicates the Cauchy principal value function, an unimportant mathematical for-

malism that ensures that the integral converges. H is equivalent to convolution with 1
πt . Ap-

plying the Hilbert transform to the ENSO3.4 index a useful way to allow for linear regres-

sion against twoorthogonal ENSO-drivenmodes; figure 3.2 indicates that orthogonalmodes

whose pattern resembles that of ENSO represent the second- and third- strongest modes of

variability in the near-surface ocean, the first- and second- strongest modes of natural vari-

ability at 200m, and apparently the first- and third- strongest modes of natural variability at

500m.

TheHilbert transform is computed on the ENSO3.4 index for years 2001-2021, and then

the first three and last three years are disregarded during the regression. This is because the dis-

crete version of the transform degenerates near its bounds. Figure 3.5 shows that theHilbert

transform of the ENSO3.4 index is orthogonal to the original, and shows the effect of the

correction done near the bounds.

Figure 3.4 shows the coefficient of regressions for ENSO and its Hilbert transform a2 and

a3 respectively, displayed next to the primary ENSO-driven modes of variability at depth

levels 0m, 100m, and 200m. There is a clear correlation between the absolute values of the
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Figure 3.5: The ENSO3.4 index, computed from monthly Argo SST 2004‐2018 and then annualized, contrasted with its
Hilbert transform, and the corrected Hilbert transform to account for degeneracy of the discrete Hilbert transform near
its bounds.

coefficients of regression and of the singular values, indicating that our regression can pro-

vide a systematic way to account for the modes of variability. The correlation decreases with

depth; as the influence of ENSOwanes at high pressure, the primary singular values of ocean

heat content change become increasingly independent from ENSO.

3.2 Computation of optimal fingerprint

An optimal two-dimensional fingerprint is computed at 34 depth levels in the upper 2000m

per the fingerprinting method discussed in chapter 2.

A multiple linear regression is computed as in (3.1) on 200 years of ACCESS data, which

comprises of 4 chunks of monthly climatology 1850-1900 concatenated to form a synthetic

timeseries of 200 years in length. Wemodel each the temperature of each point ofmodel data
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Figure 3.6: The spatial values of coefficients a2 and a3 (left) corresponding to the strength of the linear trend explained by
ENSO and the Hilbert transform of ENSO, contrasted with the primary modes of oceanic thermal variability, as determined
by SVD, at depths 0m, 100m and 200m (right). The first mode of thermal variability at the surface, which is consistent
with the seasonal cycle, is omitted.
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Figure 3.7: Depths at which optimal fingerprint is computed. 2000m is the deepest depth for which data from both Argo
and ACCESS are available.

θ′(t) as

θ′(t) = (a′1 × t) + (a′2 × E′) + (a′3 ×H′) + e′(t) (3.3)

wherea′1, a′2, anda′3 are the coefficients of regression corresponding to t,E′, themodelENSO3.4

index, andH′, the Hilbert transform of the model index, respectively. The model ENSO3.4

index is calculated identically to the ENSO3.4 index on Argo data. Independent calculation

of this index for model data is important; although ACCESS is the most skillful of the mod-

els in CMIP in accurately depicting the spatial pattern of interannual variability, it does not

correlate perfectly with observational data; hence the location of ENSO in the ocean of the

ACCESS model is not identical to that of data obtained from Argo floats (Coburn & Pryor,
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2021).

The fingerprint fp at pressure level p is given by

fp = C−1
p a1,p (3.4)

where C−1
p is the covariance matrix of residuals e′p(t) from the regression done in 3.3, and

a1,p is from 3.1.

3.2.1 Approximate matrix inverses

Although optimal fingerprinting calls forC−1
p to be computed, the inverse ofCp is not always

defined. We use a generalization of the definition of a matrix inverse, known as a Moore-

Penrose pseudoinverse to accommodate this situation. Let A ∈ Rn×k have SVD USVT,

where U ∈ Rn×r and V ∈ Rd×r, and where S ∈ Rr×r is a diagonal matrix whose diagonal

contains the first r singular values of. Then, theMoore-Penrose pseudoinverse ofA, denoted

A†, is given by

A† = VS−1UT (3.5)

This inverse is motivated by the fact that

A† = VS−1UTUSV = VVT (3.6)
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and hence

AA†A = AI = IA. (3.7)

We invert the Cp matrix inverse with r = 1. This coefficient was chosen beacuse SVDs of

Cp showed a significant amount of variability could be explained by the first mode, and sub-

sequent modes were poorly determined (see Appendix). To account for the undetermined

nature of this inverse, we also perform a ridge-regression with a ridge coefficient rr ≈ 1.01.
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4
Results and discussion

In this analysis, we compute optimal horizontal map fingerprints for measuring changes in

ocean heat content in 34 locations throughout the upper 2000m of the ocean. Computed

fingerprints correlate closely with the pattern of ocean heat content uptake at each depth,

with some noteworthy differences which correspond to the fingerprinting technique’s in-

creased weighting of quiescent areas of the ocean. We find that the multiple-linear regression
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approach proposed in this work effectively de-couples fingerprint direction that of ENSO

while remaining correlated with signal direction, suggesting a greater sensitivity of the resul-

tant fingerprint to ocean heat content trends. We identify clear warming pattern in the corre-

sponding detection variables; when averaged across all pressure levels, we find that the 95 %

confidence interval of detection variable strength derived fromACCESS-ESM-1.5 historical

simulations is exceeded in recent years.

4.1 Computed optimal fingerprints

Optimal fingerprints are computed according to the methods laid out in the previous chap-

ter. Figure 4.1 shows the computed optimal fingerprints at 0, 100m, 200m, and 500m. The

fingerprints decrease inmagnitude with increasing depth, consistent with the weaker pattern

of warming experienced at greater depths. However, fingerprint magnitude decreases much

more slowly with depth than that of the signal (Figure 3.4), underscoring the usefulness of

fingerprinting in three-dimensions: although the signal of climate change is much weaker at

these depths, noise is greatly reduced relative to the surface of the ocean, creating favorable

conditions for signal detection. The optimal fingerprints are similar to signal direction at

each depth level (see Figure 4.3 for exact correlations), with a few notable exceptions. At the

surface, the Western Pacific is emphasized more strongly than in the signal, indicating that

the relatively low temperature variability outside of ENSO and the seasonal cycles in the re-
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Figure 4.1: Computed fingerprints at 0, 100m, 200m, and 500m. Note the general warming pattern punctuated by areas
of cooling.
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gion render it more favorable for signal detection. Note also the decreasing prominance of

the negatively-weighted portion of the North Atlantic with depth. The signals at 200m and

500m depths (Figure 3.4) feature a strong gradient in linear temperature trend from North

to South consistent with the North Atlantic Oscillation (Wanner et al., 2001). The reduced

fingerprint weighting here is consistent with the extra noise that accompanies such an oscil-

lation.

4.1.1 Effectiveness ofmultiple-linear-regressionto account formodes of

interannual variability

One of themain novelties of this thesis is the use of amultiple-linear regression to account for

modes of interannual variability related to ENSO. Here we show that this technique likely

increases the skill the resulting fingerprints; their correlation with the direction of ENSO

decreases yet their correlation with the direction of the time signal of ocean heat content

increases remains constant.

Figure 4.2 shows two optimal fingerprints on Argo data, computed at the surface with a

covariance matric derived fromACCESS data, using the typical signal of ocean heat content

change. One is computed using the covariance matrix of the residuals of a multiple-linear re-

gression (top), and another is computed only the residuals of a simple de-trend (second). The

fingerprint computed with correction for ENSO is less correlated with the linear coefficient

of ENSO strength (third) than the fingerprint computed with only a de-trend. In the fourth
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Figure 4.2: Difference between detrended fingerprints and those computed with an MLR.
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panel is the difference between the fingerprint computed with the MLR and the fingerprint

computed with only a simple de-trend. The two fingerprints differ in areas where the coef-

ficient of ENSO strength is weak, further corroborating the hypothesis that the distortion

in the naively-computed fingerprint is due to the covariances caused by ENSO. Both finger-

prints display an anticorrelation of the equatorial and Northwest pacific, likely on account

of the lower noise content of the region.

Figure 4.3makes quantitative the correlations between each fingerprint and the directions

of the time signal of warming and the strength of the ENSO3.4 index. Both signals are

well-correlated with signal direction at all pressure levels down to 1700m, however the finger-

print computed without an MLR to account for ENSO is more highly correlated with the

ENSO3.4 at low pressure levels. Note that the correlation of both fingerprints with ENSO

approaches zero at higher pressures, showcasing the lesser role ENSO plays in the climatol-

ogy of the ocean below the near-surface. The decreased correlation of the optimal fingerprint

computed with an MLR to account for ENSO with ENSO, yet roughly equal correlation

with signal strength indicates that this fingerprint likely has greater correspondance to the

optimal detection direction for changes in ocean heat content.
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Figure 4.3: Difference between detrend and MLR correlations with signal and ENSO3.4 index. Note the larger negative
correlation with ENSO near the surface of the de‐trend fingerprint.
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Figure 4.4: Strength of detection variable at various depths. Note how detection variable strength decreases rapidly with
depth. All detection variables are normalized to have a mean of 0.
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Figure 4.5: Dependence of detection variable on depth. Note how detection variable strength decreases rapidly with
depth. All detection variables are normalized to have a mean of 0.
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4.2 Detecting a time-dependent uptake of ocean heat

Using the computed optimal fingerprints, optimal detection variables, as described in chap-

ter 2 are calculated to assess the trend in oceanheat content over time. The detection variables

exhibit a general warming pattern over the 15-year period 2004-2018 for which our analysis

is conducted. Figure 4.4 shows the relative strength of the optimal detection variable at vari-

ous reference depths. The magnitude of the increase of the optimal detection variable drops

off dramatically past 200m, consistent with the physical processes that govern ocean heat up-

take. However, the rate of change ofmagnitude of the detection variable is generally positive,

confirming that ocean heat content has increased appreciably in the last two decades. Figure

4.6 displays in the top panel all 34 fingerprints computed at depth levels 0-34, confirming a

general warming trend at all levels of the ocean. The bottom panel plots all 34 of these curves

onto a 3D contour ploy, displaying the much higher rate of change of the optimal detection

variable at lower pressures.

4.3 Significance

Significance of the trend in the optimal detection variable is assessed relative to the behavior

of the unforced climate. The computed set of 34 optimal fingerprints was applied to 100

years of ACCESS-MLR-ES1.5 data with minimal forcing, and a 95% confidence interval of

detection variable strength due to natural variability was established. Figure 4.6 depicts de-
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Figure 4.6: Average detection variable strength on 15 years of Argo data across 34 pressure levels versus the 95 % thresh‐
old of natural variability for the same quantity, as determined by 100 years of simulation from the ACCESS‐ESM‐1.5model.

tection variable strength relative to this confidence interval, and shows two years– 2016 and

2017– were characterized by values of the average optimal detection variable which exceeded

the threshold. The conclusion can hence be drawn that during this period, ocean heat con-

tent has increased in a significant way according to the signal direction described in Figure

3.4.
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5
Conclusion and future directions

In this analysis, an optimal fingerprint is computed on three-dimensional ocean heat data

fromArgo from2004-2018 against natural variability computedwith theACCESS-ESM-1.5

climate model. A signal of change in ocean heat content is developed via regressing against

time. A novel method for accounting for the modes of natural variability corresponding

to ENSO is proposed and applied, and shown to have a positive impact on the skill of the
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resultant fingerprint. Optimal detection variables are derived from the computed optimal

fingerprints, and their application against Argo data reveals a statistically significant extreme

in ocean heat content in the direction of the time signal of change in ocean heat content,

indicating an increase in ocean heat content across the upper 2000m of the global ocean. Al-

though further research is required to confirm the results presented here, this finding carries

significant consequences to future adaptation to climate change-induced rising sea levels.

5.1 Future directions

Future work will focus on extending the results presented here, and increasing certainty in

their significance. In this work, fingerprints are computed at only two dimensions at a time;

this is due to the limitations in the compute available for this project. However, the methods

presented here can be extended in a straightforward way to three-dimensional fingerprints

of ocean heat content. Further correction for modes of interannual variability via MLR is

also desirable. A promising candidate for this direction is correction for the North Atlantic

Oscillation, whose influence on our determined signal of ocean heat content change appears

to be felt heavily in the 200-500mdepth range. Finally, this work does not attempt to provide

attribution to the observed changes in ocean heat content to any particular cause. While it is

reasonable to hypothesize that anthropogenic climate change is the origin of these changes,

we do not establish this with any certainty here. Hence, it would be sensible to proceed with
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attemp to make an attribution of these changes to climate change, in the same spirit as other

optimal fingerprinting studies such as Hegerl et al. (1996) or Barnett et al. (2004)
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