Quantifying the Uncertainties in an Ensemble of Decadal Climate Predictions

Ehud Strobach1,2,3 and Golan Bel1,4

1Department of Solar Energy and Environmental Physics, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel, 2Earth System Science Interdisciplinary Center, College of Computer, Mathematical, and Natural Sciences, University of Maryland, College Park, MD, USA, 3Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA, 4Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel

Abstract Meaningful climate predictions must be accompanied by their corresponding range of uncertainty. Quantifying the uncertainties is nontrivial, and different methods have been suggested and used in the past. Here we propose a method that does not rely on any assumptions regarding the distribution of the ensemble member predictions. The method is tested using the Coupled Model Intercomparison Project Phase 5 1981–2010 decadal predictions and is shown to perform better than two other methods considered here. The improved estimate of the uncertainties is of great importance both for practical use and for better assessing the significance of the effects seen in theoretical studies.

1. Introduction

Climate predictions generated by general circulation models should be associated with an estimate for the uncertainties in order to provide meaningful and practical information. A common method for assessing the uncertainties in climate predictions is by means of ensembles. The ensemble may consist of different values of the parameters representing their uncertainties, different climate models, different initial conditions, and different initialization methods, as well as any other group of predictions representing the uncertainties in our knowledge of the climate system or the characteristics of the stochastic processes involved. Often, the ensemble average is used to generate the predictions, and the ensemble spread (the spread is usually quantified either by the standard deviation (STD) for large ensembles or by the entire range spanned by the ensemble predictions for small ensembles) is used to estimate the uncertainties (Déqué et al., 2007; Hawkins et al., 2016; Smith et al., 2013; Strobach & Bel, 2017; Woldemeskel et al., 2016). In order to consider the ensemble spread as a meaningful estimate for the uncertainties, one must assume a certain probability density function (PDF) of the predicted variable and must consider the predictions of the ensemble members as independent and identically distributed (i.i.d.) variables. These assumptions are not expected to be valid because the different predictions are not truly independent, and the real PDF of the variable often deviates from the assumed Gaussian distribution. Moreover, there is no guarantee that the ensemble predictions represent a sample drawn from the actual PDF of the predicted variable. In the context of predictions, the uncertainties are often estimated by the error of the model in predicting past conditions (Déqué et al., 2007). The past error is then used to estimate the uncertainties of future predictions. This estimation removes the need for assumptions regarding the distribution of the ensemble predictions, but it still assumes that the errors in the past can serve as a good estimator for future predictions.

Several studies in the past suggested various methods to empirically improve the estimation of the uncertainties. These methods can be divided into two main groups — regression methods and dressing kernel methods. The regression methods “weight” the ensemble members in order to minimize a predefined loss function that accounts for the ensemble error and spread. These methods rely on the assumption that the ensemble predictions are i.i.d. Common regression methods are the logistic regression (Wilks, 2006; Wilks & Hamill, 2007) and the nonhomogeneous Gaussian regression (Gneiting et al., 2005). The dressing kernel methods assume a specific parametric PDF for each of the ensemble members (the characteristics of the PDF are based on the ensemble errors in the past), and the uncertainty is aggregated from the PDFs of all the ensemble members. The dressing kernel methods differ in their assumptions regarding the shape and the width of the ensemble member PDFs. For example, Roulston and Smith (2003) assumed Gaussian PDFs and determined their
variance from the error spread of the best ensemble member. Wang and Bishop (2005) determined the variance from the difference between the variance of the ensemble mean errors and the ensemble variance, and Raftery et al. (2005) used Bayesian inference to optimize the variance of the dressing kernel. A more thorough discussion on the various methods can be found in Wilks (2011).

Here we suggest a method for improving the uncertainty estimation by bridging the spread and error-based estimations. Our method does not rely on any assumption regarding the distribution of the ensemble member predictions or their i.i.d. characteristic. We use the past observed relation between the ensemble mean error and the ensemble spread in order to estimate future prediction uncertainties. Our method relies on the assumption that the relation between the spread and the error does not change significantly between the period used to determine the relation and the period for which the predictions are made. The method was tested on both equally weighted and learning weighted multimodel ensembles of decadal climate predictions (Meehl et al., 2009, 2014; Smith et al., 2007). It is important to note that decadal climate predictions are based on initialized (using interpolated observed conditions) simulations of climate models (Meehl et al., 2009, 2014; Smith et al., 2007). The relatively short duration of the simulation (and prediction) period justifies our assumption that the characteristics determined by the results of the initial simulation period will remain valid during the remaining simulation period. We found that the method results in more reliable predictions than those generated by methods that rely on more assumptions.

2. Methods

2.1. Ensemble of Climate Model Predictions

The ensemble considered here includes simulations of eight climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5) decadal experiments (see Table 1). These simulations were initialized with specified initial conditions, close to the beginning of the simulated period, and integrated forward for 30 years. We arbitrarily chose one realization of each model. All the models were interpolated to the same spatial resolution of the reanalysis data. In order to ensure a long enough prediction time series, we focused on the 30 year simulations for the period 1981 to 2011. The monthly means of the surface temperature were considered as the variable of interest throughout the paper. The model outputs were corrected according to their deviations from the reanalysis data during the first 10 years (we used the climatology correction of Strobach and Bel (2016), which was found to yield the best predictions for the simple average of the ensemble). The results of a similar analysis for the surface zonal wind and precipitation appear in the supporting information S1. The first 10 years of the simulations were used to apply the different methods considered here and to tune their parameters, while the last 20 years of the predictions were used to validate and measure the performance of the methods.

The NCEP/NCAR reanalysis (Kalnay et al., 1996) data (with a spatial resolution of 2.5° × 2.5°) were considered here as observations for the purpose of tuning and validating the methods. The ERA-interim reanalysis (Dee et al., 2011) data were also used, with two different spatial resolutions (0.75° × 0.75° and 2.5° × 2.5°). We found that the performances of the different methods were not sensitive to the reanalysis data set that we used or to its spatial resolution (obviously, the latter statement is limited to the spatial resolutions that we tested and may not be generally true; see the supporting information S1 for the results using the ERA-interim reanalysis).

2.2. Weighted Ensemble

Predictions that are based on an ensemble of models are, in general, a weighted average of the ensemble members. The prediction for time \(t \) was defined as

\[
\tilde{p}_t = \sum_{E=1}^{N} w_{E,t} f_{E,t}.
\]

Here \(f_{E,t} \) is the prediction of model \(E \) for time \(t \). \(E \in [1..N] \) and \(t \in [1..n] \) where \(N \) is the number of models in the ensemble and \(n \) is the number of time points for which predictions are made. For simplicity, we restricted our attention to the case in which all the models provide forecasts for the same period with equal time steps. If there is no a priori knowledge, the weight of all members may be equal. Otherwise, the weight of the models may be based either on previous knowledge or on the past performances of the models. In order to demonstrate the generality of the methods presented here, we used both an equally weighted ensemble and a weighted ensemble for which the weights were generated by a learning algorithm. The learning algorithm that we used is the Exponentiated Gradient Average (EGA) (Cesa-Bianchi & Lugosi, 2006; Kivinen & Warmuth, 1997) that was shown to outperform the equally weighted ensemble in decadal climate predictions.
Table 1
Model Availability

<table>
<thead>
<tr>
<th>Institute ID</th>
<th>Model name</th>
<th>Modeling center (or group)</th>
<th>Grid (latitude × longitude)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCC</td>
<td>BCC-CSM1.1</td>
<td>Beijing Climate Center, China Meteorological Administration</td>
<td>64 × 128</td>
</tr>
<tr>
<td>CCCma</td>
<td>CanCM4</td>
<td>Canadian Centre for Climate Modelling and Analysis</td>
<td>64 × 128</td>
</tr>
<tr>
<td>CNRM-CERFACS</td>
<td>CNRM-CM5</td>
<td>Centre National de Recherches Meteorologiques/Centre Europeen de Recherche et Formation Avancées en Calcul Scientifique</td>
<td>128 × 256</td>
</tr>
<tr>
<td>LASG-IAP</td>
<td>FGOALS-s2</td>
<td>LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences</td>
<td>108 × 128</td>
</tr>
<tr>
<td>IPSL³</td>
<td>IPSL-CM5A-LR</td>
<td>Institute Pierre-Simon Laplace</td>
<td>96 × 96</td>
</tr>
<tr>
<td>MIROC</td>
<td>MIROCS</td>
<td>Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology</td>
<td>128 × 256, 320 × 640</td>
</tr>
<tr>
<td>MIROC</td>
<td>MIROC4h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MRI</td>
<td>MRI-CGCM3</td>
<td>Meteorological Research Institute</td>
<td>160 × 320</td>
</tr>
</tbody>
</table>

³Not available for surface zonal wind.

(Strobach & Bel, 2015, 2016). The learning algorithm used the first 10 years of the simulations to assign weights to the different models, and those weights were then used to generate the predictions for the following 20 years of the simulations. In this case, the weights during the last 20 years were independent of time. It is important to note that the weights were assigned independently for each grid cell.

2.3. Uncertainty Estimation

One of the main advantages of using an ensemble of models is the fact that one can obtain not only better predictions but also an estimate for the uncertainty range. The uncertainty range is usually defined as the range within which there is probability c to find the variable. We defined the variance of the ensemble prediction at time t as

$$\sigma_t^2 \equiv \sum_{E=1}^{N} w_E (f_{E,t} - p_t)^2. \quad (2)$$

In the equation above and in what follows, we assumed that the weights are independent of time. Because the predictions of different models are not necessarily i.i.d., we still defined the variance of the ensemble according to equation (2), without any prefactor due to the weights of the ensemble members.

If we assume that the model predictions at each time step are i.i.d. random variables, which is obviously not the case for a multimodel ensemble of climate predictions, then for many models, their average is normally distributed according to the central limit theorem. For a standard normal distribution (with a mean equal to zero and an STD equal to one), the interval that includes the variable with a probability c can be derived from the probit function:

$$\delta_c = \sqrt{2} \text{erf}^{-1}(c). \quad (3)$$

The error function was defined as

$$\text{erf}(s) \equiv \frac{1}{\sqrt{\pi}} \int_{-s}^{s} e^{-x^2} dx. \quad (4)$$

A simple transformation of the form \(\tilde{y}_t = (y_t - p_t) / \sigma_t \) results in a standard normal distribution of \(\tilde{y}_t \) if the original variable, \(y_t \), has a nonstandard Gaussian distribution. Following the above mentioned assumptions, we defined the confidence interval for probability c and for time t as

$$\Pr \left\{ (p_t - \delta_c \cdot \sigma_t) \leq y_t \leq (p_t + \delta_c \cdot \sigma_t) \right\} = c. \quad (5)$$

\(y_t \) denotes the value of the variable at time t, and the uncertainty range, which depends on the desired confidence level, c, is given by \(\Delta_G(t) \equiv 2\delta_c \cdot \sigma_t \). In what follows, we refer to this definition of the confidence interval as the Gaussian estimation.

In most ensembles of climate models, the basic assumptions required for the central limit theorem to hold are not valid and are rarely verified. The number of models in the ensemble is often limited, and the model predictions are not independent and are not necessarily identically distributed. Therefore, the Gaussian method
for estimating the uncertainty range is not expected to perform well. In order to overcome the above mentioned problems, we suggest here two alternative methods for estimating the uncertainties.

The first method is based on the same assumption of the normal distribution of the ensemble average. Using the ratio between the root-mean-square error (RMSE) and the STD of \(p_t \) during the learning period (i.e., the first 10 years), a multiplication constant was found to derive a better estimate of the uncertainty range. For an unbiased estimator of \(p_t \), the RMSE should be equal to the STD. Therefore, the uncertainty range was derived from a “corrected STD,” which was defined as \(\Delta p \equiv \gamma \cdot \Delta \sigma \) (or equivalently from a corrected factor multiplying the STD, which is defined as \(\delta_p \equiv \delta_c \cdot r \), and the correction factor \(\gamma \) was defined as

\[
\gamma \equiv \sqrt{\frac{\sum_{i=1}^{n}(p_t - y_t)^2}{\sum_{i=1}^{n} \sigma_i^2}}.
\]

Using this estimation for the uncertainty range, we obtained

\[
Pr\{ (p_t - \delta_c \cdot \sigma_t) \leq y_t \leq (p_t + \delta_c \cdot \sigma_t) \} = c.
\]

This correction simply defines the uncertainty range as the Gaussian uncertainty range multiplied by a correction factor equal to the ratio between the RMSE and the ensemble’s STD, thereby providing a better estimate of the desired confidence interval. In what follows, we refer to this uncertainty estimation method as the RMSE-corrected method. Note that this method is based on the assumption that the ratio between the squared error and the variance does not change much in time and, therefore, can be replaced by its temporal average.

The second method that we introduce here further relaxes the assumption that the prediction is normally distributed by considering an asymmetric uncertainty range around the average. In order to define the asymmetric range, we calculated two coefficients: \(\gamma_u \) and \(\gamma_d \). \(\gamma_u \) is a coefficient multiplying the STD of the ensemble in order to set the upper limit of the uncertainty range such that there is a probability of \((1 - c)/2\) to find the variable above this upper limit. Similarly, \(\gamma_d \) sets the lower limit of the range such that there is a probability \((1 - c)/2\) to find the variable below this lower limit. Both coefficients were determined by choosing the minimal range such that during the learning period, the probability of finding the variable between the lower and upper limits is \(c \). Mathematically, the coefficients were defined as

\[
\gamma_u = \inf \left\{ \gamma_u \in \mathbb{R} : \frac{1}{n} \sum_{i=1}^{n} \Theta((p_t + \gamma_u \cdot \sigma_t) - y_t) \geq \frac{1 + c}{2} \right\},
\]

and

\[
\gamma_d = \inf \left\{ \gamma_d \in \mathbb{R} : \frac{1}{n} \sum_{i=1}^{n} \Theta(y_t - (p_t - \gamma_d \cdot \sigma_t)) \geq \frac{1 + c}{2} \right\}.
\]

In the above equations, \(\Theta(x) \) is the Heaviside theta function (\(\Theta(x) = 1 \) for \(x > 0 \), \(\Theta(x) = 0 \) for \(x < 0 \) and \(\Theta(0) = 1/2 \)). In equation (8), the sum over the Heaviside theta functions gives the fraction of the learning period observations below the upper limit (we define \(\gamma_u \) as the minimal value such that this fraction is greater than (or equal to) \(1 - (1 - c)/2 \equiv (1 + c)/2 \)). Similarly, in equation (9), the sum over the Heaviside theta functions gives the fraction of the learning period observations above the lower limit (we define \(\gamma_d \) as the minimal value such that this fraction is greater than (or equal to) \(1 - (1 - c)/2 \equiv (1 + c)/2 \)). Equation (8) simply states that \(\gamma_u \) is the minimal factor multiplying the STD such that a fraction of \((1 - c)/2\) of the points during the learning period are above the upper limit of the uncertainty range \((p_t + \gamma_u \cdot \sigma_t)\). Similarly, equation (9) states that \(\gamma_d \) is the minimal factor multiplying the STD such that a fraction of \((1 - c)/2\) of the points during the learning period are below the lower limit of the uncertainty range \((p_t - \gamma_d \cdot \sigma_t)\). Using these definitions, the uncertainty range is given by:

\[
Pr\{ p_t - \gamma_d \cdot \sigma_t \leq y_t \leq p_t + \gamma_u \cdot \sigma_t \} \approx c.
\]

The approximately (rather than equality) sign here stems from the fact that the probability can change in steps of \(1/n \) (\(n \) is the number of points in the time series used for calculating \(\gamma_u \) and \(\gamma_d \)). Practically, it implies that for a fine resolution in setting the confidence level \(c \), the length of the learning time series, \(n \), should be large. In what follows, we refer to this estimation of the uncertainty range as the asymmetric range method. Note that this method defines the range such that upper and lower tails of the distribution have an equal weight of \((1 - c)/2\) (and therefore, the probability of finding the variable within the uncertainty range is \(c \)).
Figure 1. The log of the ratio between the uncertainty ranges of the surface temperature with a confidence level of 0.9 as estimated by the RMSE-corrected, asymmetric, and Gaussian methods. (left column) The ratio for the predictions of the equally weighted ensemble. (right column) The ratio for the predictions of the ensemble weighted by the EGA forecaster. (top row) $\ln(\Delta R/\Delta G)$. (bottom row) $\ln(\Delta A/\Delta G)$. Above each panel, the global mean and the spatial STD are denoted.

It is important to note that all three methods described above base the estimation of the uncertainty range on the STD of the ensemble. Moreover, they all assume that the ratio between the uncertainty range and the STD does not vary much in time. The Gaussian method relies on the assumption of normally distributed model predictions at each time step; the RMSE-corrected method relaxes this assumption and attempts to define a range that is centered on the ensemble prediction, minimizing the prediction bias, and the asymmetric range method attempts to determine a minimal range such that the probability of finding the variable within this range is c, regardless of the details of the model predictions distribution. Figures S1–S5 of the supporting information S1 present the predictions and their associated uncertainty ranges as estimated by the three methods described above.

The performances of the different methods are measured by the relation between the desired confidence level, c, and the actual fraction of the validation time series that fell within the estimated uncertainty range. This fraction is defined as

$$F_q = \frac{1}{n_v} \sum_{t=1}^{n_t} \Theta(y_t - (p_t - \delta_q \cdot \sigma_t)) \Theta((p_t + \delta_q \cdot \sigma_t) - y_t).$$

(11)

where q takes the values G and R for the Gaussian and RMSE-corrected methods, respectively. n_v is the number of time points in the validation series, and the index t measures the time points from the beginning of the validation time series (the period following the learning). For the asymmetric method, the fraction is defined as

$$F_A = \frac{1}{n_v} \sum_{t=1}^{n_t} \Theta(y_t - (p_t - \delta_u \cdot \sigma_t)) \Theta((p_t + \delta_u \cdot \sigma_t) - y_t).$$

(12)
Figure 2. The spatial distribution of the difference between the fraction of the observations that were outside the predicted range of the $c = 0.9$ confidence level and the predicted 0.1 fraction ($c - F_{q}$), for the surface temperature. (left column) The difference for the equally weighted ensemble. (right column) The difference for the EGA weighted ensemble. (top row) $c - F_{G}$. (middle row) $c - F_{R}$. (bottom row) $c - F_{A}$. The spatial average and the STD of the difference are denoted above each panel.

3. Results

We first investigated the ratio between the uncertainty ranges of the surface temperature estimated by the RMSE-corrected and the asymmetric range methods ($\Delta_{R} \equiv 2\delta_{R} \cdot \sigma_{t}$ and $\Delta_{A} \equiv (\gamma_{u} + \gamma_{d}) \cdot \sigma_{t}$, respectively) and those estimated by the Gaussian method ($\Delta_{G} \equiv 2\delta_{G} \cdot \sigma_{t}$) for a confidence level of $c = 0.9$.

Figure 1 shows the spatial distribution of the natural logarithm of the ratio. The log scale was chosen to emphasize values above and below one (zero in the log scale). Positive values (the ratio is larger than one) correspond to uncertainty ranges (estimated by the RMSE-corrected and the asymmetric range methods) that are larger than the range estimated by the Gaussian method. Similarly, negative values (the ratio is smaller than one) correspond to smaller uncertainty ranges than the range estimated by the Gaussian method. Figure 1 (left column) shows the ratio for the equally weighted ensemble, and Figure 1 (right column) shows it for an ensemble weighted according to the EGA learning algorithm. Figure 1 (top row) shows $ln(\Delta_{R}/\Delta_{G})$.
Figure 3. Reliability diagrams for the different estimation methods of the surface temperature uncertainty range. The observed frequency represents the spatial average over all the grid cells. (left column) The reliability for the equally weighted ensemble. (right column) The reliability for the EGA forecaster. (top row) The reliability of the Gaussian method. (middle row) The reliability of the RMSE-corrected method. (bottom row) The reliability of the asymmetric method.
and Figure 1 (bottom row) show ln (Δ₄/Δ₉). Above each panel, the global average (on the left) of the ratio and its STD (on the right) are denoted.

Figure 1 (top row) shows that, in general, our ensemble forecast is overconfident, that is, the spread of the ensemble predictions is smaller than the typical error, and it becomes even more overconfident when the weighting is done according to the EGA learning algorithm. The spatial variability of the ratio is not very large. The performances of the different methods of estimating the uncertainty range can be tested by comparing the desired confidence, c, to the fraction of the observations within the predicted range, Fₗ. Fₗ < c implies overconfidence (i.e., too narrow a range) and vice versa.

Figure 2 shows the difference between the fraction of the observations that were outside the predicted range of the 0.9 confidence level and the predicted 0.1 fraction (c−Fₗ). Figure 2 (left column) shows the difference for the equally weighted ensemble, and Figure 2 (right column) shows the difference for the EGA forecaster. Figure 2 (top row) shows the c−F₉, Figure 2 (middle row) shows the c−F₆, and Figure 2 (bottom row) shows the c−F₄. Above each panel, we denote the spatial average (on the left) and the STD (on the right) of the difference. The figure shows that in most regions, Δ₉ is too small (c > F₉), which justifies the larger values of Δ₉ and Δ₆. The underestimation of Δ by Δ₉ is more severe for the EGA than for the equally weighted ensemble.

Figure 2 demonstrates that the RMSE-corrected and asymmetric methods outperform the Gaussian method. Moreover, it shows that the asymmetric method outperforms the RMSE-corrected method. One can also notice that the methods work better for the equally weighted ensemble than for the EGA forecaster. This better performance is due to the fact that the ensemble STD, σ₉, of the EGA is defined by weights that minimize the forecast error and not by weights that maximize the forecast reliability. In the supporting information S1, we provide similar results for the surface zonal wind and for the precipitation (Figures S7 and S10, respectively) and for the temporal evolution of Fₗ (Figures S12–S14 for the surface temperature, zonal wind, and precipitation, respectively). The results accord with the results presented here for the surface temperature and with the basic assumptions of the methods for estimating the uncertainty range.

These methods can be used for different confidence levels. Tests of the method performances that span the whole range of confidence levels, c = [0, 1], provide more information about the relation between the estimated and observed distributions of the variable. Figure 3 shows the observed frequency versus the expected one (reliability diagrams) for different confidence levels. The observed frequencies represent the spatial average over the whole globe. Figure 3 (left and right columns) shows the reliability diagrams for the equally weighted ensemble (EGA forecaster). Figure 3 (top row) shows the reliability for the Gaussian method, Figure 3 (middle row) shows the reliability for the RMSE-corrected method, Figure 3 (bottom row) shows the reliability for the asymmetric method.

Figure 3 shows that the RMSE-corrected and asymmetric methods perform much better than the Gaussian method. The improvement is more pronounced for the EGA forecaster. One can also observe that the asymmetric method is more reliable for higher confidence levels. Similar results were obtained for the surface zonal wind and for the precipitation. However, we found that in most cases, the uncertainty range for the surface zonal wind was underestimated by all the methods (see Figures S8 and S11 of the supporting information S1).

4. Summary and Discussion

A new method for estimating the uncertainty of ensemble-based climate predictions was suggested. This method is based on learning the relations between the prediction errors and their spread in the past and using these relations in order to estimate the uncertainties of future predictions for which only the spread is known. The method does not rely on any assumptions regarding the distribution of the ensemble member predictions or that they are i.i.d. It also has the advantage of estimating separately the upper and lower uncertainties. The inherent assumption of the method is that the relation between the spread of the ensemble predictions and the errors does not significantly change during the period spanned by the predictions. Moreover, it assumes that this relation has relatively small fluctuations, which allows it to be considered as independent of time.

The excellent performance of the method in estimating the uncertainties during a validation period, based on the relations found during an earlier learning period, suggests that these assumptions are valid for a multimodel ensemble of decadal climate predictions. Moreover, it was shown that the method performs...
well for both the equally weighted ensemble and the ensemble weighted according to a learning algorithm applied during the training period. The performance of the asymmetric method was better than those of the RMSE-corrected method and the method based on the assumption of a Gaussian distribution of the ensemble member predictions. It was also found that, in general, estimations of the uncertainties that are based on the ensemble spread without correction result in overconfident predictions (therefore, the correction factors are larger than one). The overconfidence is even stronger for the weighted ensemble. It is possible that weighting schemes that are based on the reliability of the predictions and not just on their error may result in a spread that is closer to the errors; however, a deeper discussion of this issue is beyond the scope of this paper.

The method suggested here is not limited to estimating one measure of the uncertainties (e.g., the variance); applying the method with different confidence intervals was shown to provide an excellent estimation of the whole PDF of the variables. The asymmetric range method is not limited to decadal climate predictions and is likely to be useful for climate predictions of shorter time scales or for weather predictions. In particular, the method may be useful for estimating the uncertainties for data assimilation in numerical weather predictions (Houtekamer et al., 1996; Kalnay, 2003; Warner, 2010).

Notation

- **STD** Standard deviation
- **RMSE** Root-mean-square error
- **PDF** Probability density function
- **EGA** Exponentiated gradient average

Acknowledgments

This research was partially supported by the Israel Ministry of Agriculture and Rural Development (Eugene Kandel Knowledge Centers) as part of the Root of the Matter—The root zone knowledge center for leveraging modern agriculture. We acknowledge the World Climate Research Program’s Working Group on Coupled Modelling, which is responsible for the CMIP, and we thank the climate modeling groups (listed in Table 1 of this paper) for producing and making available their model outputs. For the CMIP, the U.S. Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and leads the development of software infrastructure in partnership with the Global Organization for Earth System Science Portals. The CMIP5 data may be accessed at https://esgf-node.llnl.gov/projects/cmip5/ and the NCEP Reanalysis data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site at http://www.esrl.noaa.gov/psd/.

References

