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The majority of research on efficient and scalable algorithms in computational science 
and engineering has focused on the forward problem: given parameter inputs, solve the 
governing equations to determine output quantities of interest. In contrast, here we 
consider the broader question: given a (large-scale) model containing uncertain parameters, 
(possibly) noisy observational data, and a prediction quantity of interest, how do we 
construct efficient and scalable algorithms to (1) infer the model parameters from the 
data (the deterministic inverse problem), (2) quantify the uncertainty in the inferred 
parameters (the Bayesian inference problem), and (3) propagate the resulting uncertain 
parameters through the model to issue predictions with quantified uncertainties (the 
forward uncertainty propagation problem)?
We present efficient and scalable algorithms for this end-to-end, data-to-prediction process 
under the Gaussian approximation and in the context of modeling the flow of the Antarctic 
ice sheet and its effect on loss of grounded ice to the ocean. The ice is modeled as a 
viscous, incompressible, creeping, shear-thinning fluid. The observational data come from 
satellite measurements of surface ice flow velocity, and the uncertain parameter field to 
be inferred is the basal sliding parameter, represented by a heterogeneous coefficient in a 
Robin boundary condition at the base of the ice sheet. The prediction quantity of interest 
is the present-day ice mass flux from the Antarctic continent to the ocean.
We show that the work required for executing this data-to-prediction process—measured 
in number of forward (and adjoint) ice sheet model solves—is independent of the state 
dimension, parameter dimension, data dimension, and the number of processor cores. The 
key to achieving this dimension independence is to exploit the fact that, despite their large 
size, the observational data typically provide only sparse information on model parameters. 
This property can be exploited to construct a low rank approximation of the linearized 
parameter-to-observable map via randomized SVD methods and adjoint-based actions of 
Hessians of the data misfit functional.
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1. Introduction

The future mass balance of the polar ice sheets will be critical to climate in the coming century, yet there is much 
uncertainty surrounding even their current mass balance. The current rate of ice sheet mass loss was recently estimated 
at roughly 200 billion metric tons per year in [1] using data from various sources, including radar and laser altimetry, 
gravimetric observations, and surface mass balance calculations of regional climate models.1 Moreover, this mass loss has 
been observed to be accelerating [2]. Driven by increased warming, collapse of even a small portion of one of these ice 
sheets has the potential to greatly accelerate this figure. Indeed, recent evidence suggests that sea level rose abruptly at 
the end of the last interglacial period (118,000 years ago) by 5–6 m; the likely cause is catastrophic collapse of an ice 
sheet driven by warming oceans [3]. Based on a conservative estimate of a half meter of sea level rise, the Organization 
for Economic Cooperation and Development estimates that the 136 largest port cities, with 150 million inhabitants and $35 
trillion worth of assets, will be at risk from coastal flooding by 2070 [4].

Clearly, model-based projections of the evolution of the polar ice sheets will play a central role in anticipating future sea 
level rise. However, current ice sheet models are subject to considerable uncertainties. Indeed, ice sheet models were left 
out of the Intergovernmental Panel on Climate Change’s 4th Assessment Report, which stated that “the uncertainty in the 
projections of the land ice contributions [to sea level rise] is dominated by the various uncertainties in the land ice models 
themselves . . . rather than in the temperature projections” [5].

Ice is modeled as a creeping, viscous, incompressible, shear-thinning fluid with strain-rate- and temperature-dependent 
viscosity. Severe mathematical and computational challenges place significant barriers on improving predictability of ice 
sheet flow models. These include complex and very high-aspect ratio (thin) geometry, highly nonlinear and anisotropic 
rheology, extremely ill-conditioned linear and nonlinear algebraic systems that arise upon discretization as a result of het-
erogeneous, widely-varying viscosity and basal sliding parameters, a broad range of relevant length scales (tens of meters 
to thousands of kilometers), localization phenomena including fracture, and complex sub-basal hydrological processes.

However, the greatest mathematical and computational challenges lie in quantifying the uncertainties in the predictions 
of the ice sheet models. These models are characterized by unknown or poorly constrained fields describing the basal sliding 
parameter (resistance to sliding at the base of the ice sheet), basal topography, geothermal heat flux, and rheology. While 
many of these parameter fields cannot be directly observed, they can be inferred from satellite observations, such as those 
of ice surface velocities or ice thickness, which leads to a severely ill-posed inverse problem whose solution is extremely 
challenging. Quantifying the uncertainties that result from inference of these ice sheet parameter fields from noisy data can 
be accomplished via the framework of Bayesian inference. Upon discretization of the unknown infinite-dimensional param-
eter field, the solution of the Bayesian inference problem takes the form of a very high-dimensional posterior probability 
density function (pdf) that assigns to any candidate set of parameter fields our belief (expressed as a probability) that a 
member of this candidate set is the “true” parameter field that gave rise to the observed data. Sampling this posterior pdf 
to compute, for example, the mean and covariance of the parameters presents tremendous challenges, since not only is it 
high-dimensional, but evaluating the pdf at any point in parameter space requires a forward ice sheet flow simulation—and 
millions of such evaluations may be required to obtain statistics of interest using state-of-the-art Markov chain Monte Carlo 
methods. Finally, the ice sheet model parameters and their associated uncertainties can be propagated through the ice sheet 
flow model to yield predictions of not only the mass flux of ice into the ocean, but also the confidence we have in those 
predictions. This amounts to solving a system of stochastic PDEs, which again is intractable when the PDEs are complex and 
highly nonlinear and the parameters are high-dimensional due to discretization of an infinite-dimensional field.

In summary, while one can formulate a data-to-prediction framework to quantify uncertainties from data to inferred 
model parameters to predictions with an underlying model of non-Newtonian ice sheet flow, attempting to execute this 
framework for the Antarctic ice sheet (or other large-scale complex models) is intractable for high-dimensional parameter 
fields using current algorithms. Yet, quantifying the uncertainties in predictions of ice sheet models is essential if these 
models are to play a significant role in projections of future sea level. The purpose of this paper is to present an integrated 
framework and efficient, scalable algorithms for carrying out this data-to-prediction process. By scalable, we mean that the 
cost—measured in number of (linearized) forward (and adjoint) solves—is independent of not only the number of processor 
cores, but importantly the state variable dimension, the parameter dimension, and the data dimension.

Two key ideas are needed to produce such scalable algorithms. First, we use Gaussian approximations of both the pos-
terior pdf that results from Bayesian solution of the inverse problem of inferring ice sheet parameter fields from satellite 
observations of surface velocity, as well as the pdf resulting from propagating the uncertain parameter fields through the 
forward ice sheet model to yield predictions of present-day mass flux into the ocean. This is accomplished by linearizing the 
parameter-to-observable map as well as the parameter-to-prediction map around the maximum a posterior point. We have 
found that for ice sheet flow problems with the basal sliding parameter as the field of interest, such linearizations are 
satisfactory approximations for what would otherwise be an intractable problem [6].

However, even with these linearizations, computing the covariance of each of the resulting pdf’s is prohibitive due to 
the need to solve the forward ice sheet model a number of times equal to the parameter dimension (or data dimension). 

1 This estimate is broken down into estimates for individual ice sheets with confidence intervals (−149 ± 49 Gigatonnes per year from Greenland, 
+14 ± 43 from East Antarctica, −65 ± 26 from West Antarctica, −20 ± 15 from the Antarctic peninsula).
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We overcome this difficulty by recognizing that these maps are inherently low-dimensional, since the data inform a limited 
number of directions in parameter space, and the predictions are influenced by a limited number of directions in parameter 
space. Thus, with the right algorithm, the work—as measured by ice sheet Stokes solves—should scale only with the “infor-
mation dimension.” The key idea to achieve this is to construct a low rank approximation of the parameter-to-observable 
map via a matrix-free randomized SVD method.

The result is a data-to-prediction framework whose computational cost is overwhelmingly dominated by ice sheet model 
solves, both forward and adjoint (and to a lesser extent elliptic solves representing the action of parameter prior covari-
ances). Scalability of the entire data-to-prediction framework then follows when we show that (1) the number of forward (and adjoint) 
ice sheet solves needed for the data-to-prediction process is independent of the state dimension, the parameter dimension, and the data 
dimension; and (2) the forward (and adjoint) ice sheet solver demonstrates strong and weak scalability with increasing number of pro-
cessor cores. We will show that our data-to-prediction framework—despite being adamantly “intrusive” to ensure algorithmic 
scalability of the inversion, uncertainty quantification, and prediction operations—can be expressed in terms of a fixed and 
dimension-independent number of forward-like ice sheet model solves, and thus exploits the same algorithms, solver, and 
parallel implementation needed for the forward problem. Thus, if a forward solver with both algorithmic and parallel scala-
bility can be designed—as will be shown in Section 2—scalability of the entire data-to-prediction process ensues.

We demonstrate this scalability of the data-to-prediction framework on the problem of predicting the present-day ice 
mass flux from Antarctica, starting from Interferometric Synthetic Aperture Radar (InSAR) satellite observations of the sur-
face ice flow velocities, inferring the basal sliding parameter field from this data via a 3D nonlinear Stokes ice flow model on 
the present-day ice sheet geometry (Section 3), quantifying the uncertainty in the parameter inference using the Bayesian 
framework (Section 4), and propagating the uncertain basal sliding parameters through the forward ice sheet flow model to 
yield predictions of ice mass flux with quantified uncertainties (Section 5).

2. Forward problem: modeling ice sheet flow

The forward nonlinear Stokes ice sheet flow solver is the fundamental kernel of our data-to-prediction framework and is 
invoked repeatedly throughout. It is crucial that this forward solver scales algorithmically and in parallel. In this section we 
give a brief summary of the design of our forward ice sheet flow solver and provide performance results. For more details 
see [7].

The flow of ice is commonly modeled as a viscous, shear-thinning, incompressible fluid [8,9]. The balance of mass and 
linear momentum state that

−∇ · [η(u)(∇u + ∇uT ) − I p] = ρg, (1a)

∇ · u = 0, (1b)

where u denotes the ice flow velocity, p the pressure, ρ the mass density of the ice, and g the acceleration of gravity. 
We employ a constitutive law for ice that relates the stress tensor σ and the strain rate tensor ε̇ = 1

2 (∇u + ∇uT ) by Glen’s 
flow law [10],

σ = 2η(u)ε̇ − I p, with η(u) = 1

2
A− 1

n ε̇
1−n
2n

II , (1c)

where η is the effective viscosity, I is the second order unit tensor, ε̇II = 1
2 tr(ε̇2

u) is the second invariant of the strain rate 
tensor, n ≥ 1 is Glen’s flow law exponent, and A is a flow rate factor that is a function of the temperature T , parameterized 
by the Paterson–Budd relation [11]. To construct a temperature field for our simulations, we approximately solve steady-
state, one-dimensional advection–diffusion equations in the vertical direction at every horizontal grid point. The advection 
velocity for this problem is only vertical, to spatially decouple the columns.2 The advection velocity for these equations 
interpolates between the accumulation rate at the upper surface and zero at the base; we use the surface temperature 
as the upper boundary condition and either the geothermal heat flux or the temperature pressure melting point as the 
lower boundary condition where appropriate. We note that whether the resulting basal temperature is below the pressure 
melting point does not affect our choice of boundary conditions for the velocity described below; incorporating a regime 
change between frozen and sliding basal conditions into our inversion framework is the subject of future work. The surface 
temperature, accumulation rate, and geothermal heat flux data come from the ALBMAP dataset [12].

The top boundary of the Antarctic ice sheet �t is traction-free, and on its bottom boundary �b, we impose no-normal 
flow and a Robin-type condition in the tangential direction:

σn = 0 on �t, (1d)

u · n = 0, T σ un + exp(β)T u = 0 on �b. (1e)

2 It should be noted that this temperature does not account for horizontal convection, and thus biases towards warmer temperatures at the ice sheet 
margins, where in reality colder ice from the sheet’s interior is found at depth.
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Here, the coefficient exp(β) in the Robin boundary condition in (1e) describes the resistance to basal sliding. In the fol-
lowing, we refer to β = β(x) as the basal sliding parameter field.3 Moreover, T := I − n ⊗ n is a projection operator onto 
the tangential plane, where “⊗” denotes the outer product. Note that exp(β), which relates tangential velocity to tangential 
traction, subsumes several complex physical phenomena and thus does not itself represent a physical parameter. It depends 
on a combination of the frictional behavior of the ice sheet, the roughness of the bedrock, the thickness of a plastically de-
forming layer of till, and the amount and pressure of water present between the ice sheet and the bedrock, all of which are 
presently poorly understood and constrained sub-grid scale processes. As such, the basal sliding parameter field β is subject 
to great uncertainty; subsequent sections will discuss the inverse problem of estimating it from observational data. We note 
that in our model, the temperature does not directly affect the boundary condition: a Robin condition is assumed even 
when the temperature is below the pressure melting point. On lateral ice–ocean boundaries, we use traction-free boundary 
conditions above sea level. Below sea-level, the normal component of the traction is set to the hydrostatic pressure of sea 
water and the tangential components of the traction is zero. We impose no-slip boundary conditions at lateral boundaries, 
where the ice sheet terminates on land. The lateral boundaries involve neither the observations nor the uncertain basal 
parameters, and thus in the interests of conciseness, we omit them from the discussion of the deterministic and statistical 
inverse problems in Sections 3 and 4.

The geometric description of the Antarctic ice sheet is constructed from the ALBMAP dataset [12]. In our simulations, 
we restrict ourselves to the grounded portion of the ice sheet, i.e., we neglect ice shelves, the extension of the sheet onto the 
surface of the ocean: we therefore apply lateral boundary conditions at grounding lines as discussed above. A locally refined 
mesh of hexahedral elements is used to discretize the ice sheet domain. We construct a coarse quadrilateral mesh that 
describes the lateral geometry of the ice sheet and use this mesh as the basis for forest-of-quadtree mesh refinement using 
the p4est library [13]. Each quadrant in the refined mesh is then used as the footprint of a column of hexahedra. We do 
not constrain the columns to have the same vertical resolution, but allow each hexahedron to be independently refined 
in the vertical direction. This hybrid mesh refinement strategy gives us flexibility to control the quality of the elements 
in our computational mesh. In particular, we can control the aspect ratio of the elements using local refinement, which is 
not possible when isotropic refinement is used, such as octree-based refinement. Note that as the mesh is refined, we also 
refine the geometry description of the Antarctic ice sheet.

For accuracy and efficiency, we use a high-order accurate and locally volume-conserving discretization that is provably 
stable for our locally and nonconformingly/refined hexahedral meshes. To be precise, we use the velocity/pressure finite 
element pair Qk × Qdisc

k−2 for polynomial velocity order k ≥ 2, i.e., with continuous tensor-product polynomials of order k for 
each velocity component, and discontinuous tensor-product polynomials of order k − 2 for the pressure [14,15].

An inexact Newton–Krylov method is used to solve the nonlinear systems arising upon discretization of (1), i.e., each 
Newton linearization is solved inexactly using an iterative Krylov subspace method. If the inexactness is properly controlled, 
the number of overall Krylov iterations—and thus the overall work—is minimized [7]. Given a velocity/pressure iterate 
(u j, p j) at the jth Newton step, the new iterate is computed as (u j+1, p j+1) = (u j, p j) + α(δu, δp) with an appropriate 
step length α > 0. The update (δu, δp)T is the solution of the linear system(

A(u j) BT

B 0

)(
δu
δp

)
= −

(
r j

1

r j
2

)
, (2)

where A(·) corresponds to the linearization of the nonlinear viscous block in (1a) about u j , B is the discretized divergence 
operator and r j

1 and r j
2 are the nonlinear residuals corresponding to (1a) and (1b), respectively, evaluated at (u j, p j). 

We use matrix-free matrix-vector applications to compute linear and nonlinear residuals, which is particularly efficient for 
high-order discretizations as it allows one to exploit the tensor product structure of the finite element basis [16–18,7].

Note that due to the form of the nonlinear rheology (1c), the linearization of the nonlinear viscous block in (1a) results in 
a anisotropic tensor effective viscosity in the operator A(·). Due to self-adjointness, this operator is identical to the viscous 
block operator of the adjoint Stokes equations. The adjoint equations will be presented in the next section; the expression 
for the anisotropic tensor effective viscosity is given in (9).

To solve (2) with an iterative Krylov method (GMRES or FGMRES), efficient preconditioning is critical for scalability. 
We use a block right preconditioner given by(

A(u j) BT

0 S̃

)−1

,

where the inverse of the (1, 1)-block A(u j) is approximated by an algebraic multigrid V-cycle (in particular, GAMG from 
PETSc [19]), and S̃ denotes a Schur complement approximation given by the inverse viscosity-weighted lumped mass matrix 
[20]. Algebraic multigrid for the (1, 1)-block requires an assembled fine grid operator, but the matrix A(u j) is expensive to 
construct for high-order discretizations: for our elements, the assembly time of A(u j) scales as k7. The increasing density of 
A(u j) with k also adds to the setup cost of the AMG hierarchy, which is the bottleneck for parallel scalability. We therefore 
construct an approximation Ã(u j) for preconditioning based on low order finite elements [18]; in the presence of noncon-

3 Note that, in the literature, the parameterization of the Robin coefficient varies, e.g., instead of exp(β), sometimes β2 is chosen in (1e).
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Fig. 1. Left: the coarse quadrilateral mesh from which the 3D meshes used in problems P1, P2, and P3 are extruded and refined. P1 is a discretization of 
the ice sheet with a maximum element width-to-height aspect ratio of 10:1; P2 and P3 are created by successive bisection in each direction. Each problem 
uses Q3 ×Qdisc

1 finite elements, with 330K, 2.6M, and 21M elements, respectively. This amounts to 38M, 270M, and 2.1B unknowns. Right: the exponential 
of the synthetic basal sliding field β used in the Robin-type basal boundary condition for problems P1, P2, and P3. The pre-exponential A−1/n in (1c) is 
computed from the Paterson–Budd relation [11], with the temperature varying between −50 ◦C and −10 ◦C. For Glen’s exponent, we use n = 3, and we 
take ρ = 910 kg/m3 and g = 9.81 m/s2.

Table 1
Strong scaling results for our nonlinear Stokes solver for the Antarctic ice sheet problem on ORNL’s Titan supercomputer. The table assesses algorithmic and 
parallel scalability for three problems (P1, P2, and P3) posed on successively finer meshes, each solved to a tolerance of 10−12 . A description of the problem 
setup is given in Fig. 1. For each run, we report the number of degrees of freedom (#dof), the CPU cores used (#cores), the number of Newton iterations 
(#Newton), the number of overall preconditioned Krylov iterations (# Krylov), and timings and parallel efficiencies for the matrix-vector multiplications and 
the multigrid V-cycles (solve time/eff) and for the matrix assembly and the AMG setup (setup time/eff). A block-Jacobi/SOR smoother is used on each level 
of the V-cycle: incomplete factorization smoothers can be more effective for similar problems [22,7], but it can be challenging to achieve robustness for the 
(1, 1)-block for problems with high element aspect ratio, and strong variations in viscosity and bedrock topography. For comparison, we show the number 
of Krylov iterations (#Krylov (Poisson)) necessary to solve a scalar, constant coefficient, linear Poisson problem posed on the same meshes using Q3 finite 
elements and a V-cycle smoothed by damped block-Jacobi/IC(0), which yields close-to-optimal algorithmic scalability. The solution of this highly nonlinear, 
indefinite, highly heterogeneous, anisotropic, vector-valued ice flow problem requires just ∼ 2× more Krylov iterations per Newton step than is needed for the 
(linear, positive definite, homogeneous, isotropic, scalar-valued) Poisson problem, indicating just how efficient our algorithms are. The remaining bottleneck 
for scalability to very large core counts is the setup phase of the algebraic multigrid preconditioner. The “�” symbol in the table indicates that the AMG 
setup times increased with strong scaling, and thus parallel efficiencies are not reported.

#dof #cores #Newton #Krylov Solve time (s) / eff (%) Setup time (s) / eff (%) #Krylov (Poisson)

P1 38M 128 8 149 504.8 / 100 493.5 / 100 12
256 8 153 259.6 / 97 260.4 / 95 12
512 8 157 134.3 / 94 156.0 / 80 12

1024 8 147 70.1 / 90 97.2 / 63 12

P2 270M 1024 9 240 796.6 / 100 735.0 / 100 12
2048 9 245 414.3 / 96 424.6 / 87 12
8192 9 243 130.7 / 76 229.0 / 40 13

P3 2.1B 16,384 13 314 771.5 / 100 1424.5 / � 15
65,536 13 367 504.2 / 38 1697.1 / � 15

131,072 11 340 232.9 / 42 2033.1 / � 16

forming element faces, this can be challenging [7]. The assembly time for Ã(u j) depends only on the total problem size, 
not on the order k, and the sparsity is the same as for a low order discretization.

Fig. 1 defines the Antarctic ice sheet problem we use to study scalability of our nonlinear Stokes solver, described above. 
The basal sliding parameter field was computed from relating the driving stress due to gravity to the observed surface 
velocities; this synthetic β field is intended to be representative of the “true” β field (one computed via inversion). The 
base coarse mesh is shown, from which a sequence of successively finer meshes is constructed. The figure also displays the 
synthetic basal sliding parameter field β used for the scaling study.

Table 1 presents algorithmic and (strong) parallel scaling studies on the sequence of successively refined Antarctic ice 
flow problems defined in Fig. 1. The results demonstrate excellent algorithmic scalability, despite the severe computational 
challenges of the problem (nonlinearity, indefiniteness, high-order discretization, strongly-varying coefficients, anisotropy, 
high aspect ratio mesh and geometry, locally-refined/nonconforming mesh, multigrid for a vector system). Both the number 
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of Newton iterations and the average number of Krylov iterations per Newton iteration are only mildly sensitive to problem 
size (over a range from 38M to 2.1B unknowns) and number of cores (from 128 to 131,072 cores). At larger core counts, 
the setup phase of algebraic multigrid remains the bottleneck in parallel scalability. Geometric multigrid for problems on 
forest-of-octree meshes has proven efficient and scalable [21], and can eliminate most of the setup time, but must be 
adapted to the hybrid refinement scheme discussed above. This is a focus of our ongoing work.

Now that we have at our disposal a scalable forward nonlinear Stokes solver, we proceed to the inverse problem and its 
associated uncertainty, both of which require thousands of forward Stokes solves, as will be seen in the next two sections.

3. Inverse problem: inferring the basal sliding parameter from observed ice surface velocity

In this section, we describe the solution of the inverse problem of inferring the two-dimensional basal sliding parameter 
field β in (1e) from satellite-derived surface velocity observations with the ice sheet flow model described in the previous 
section. Several recent studies have focused on inversion for the basal boundary conditions in ice sheet models. Contribu-
tions that use adjoint-based gradient information to solve the deterministic inverse problem include [23–30]. In [31] the 
authors use InSAR surface velocity measurements, as employed in this section, and invert for the basal sliding parameter 
field for the Antarctic ice sheet. However, unlike the present work, the authors use the first-order accurate Stokes approxi-
mation [32,33]. This model is derived from the full Stokes equations by making the assumptions that horizontal gradients of 
vertical velocities are negligible compared to vertical gradients of horizontal velocities, that horizontal gradients of vertical 
shear stresses are small compared to ρg , and that the pressure in vertical direction is hydrostatic. The work presented 
here represents the first continental scale ice sheet inversion using the full Stokes ice flow equations, which is considered 
the highest fidelity ice flow model available. Moreover, this work is the first to quantify uncertainty in the solution of the 
Antarctic ice sheet inverse problem using any flow model (Section 4), as well as propagate that uncertainty to a prediction 
quantity of interest (Section 5).

In the remainder of this section, we present the inverse problem formulation, give a brief overview of the solution 
method, provide expressions for the gradient based on adjoint ice flow equations, and present results for the deterministic 
inverse problem.

3.1. The regularized inverse problem

The inverse problem is formulated as follows: given (possibly noisy) observational data uobs of the ice surface velocity 
field, we wish to infer the basal sliding parameter field β(x) (defined as a coefficient in a Robin boundary condition at 
the base of the ice sheet; see (1e)) that produces a surface velocity field that best fits the observed velocity. This can be 
formulated as the variational nonlinear least squares optimization problem

min
β

J (β) := 1

2

∫
�t

|Bu(β) − uobs|2
|uobs|2 + ε

ds + R(β), (3)

where the forward velocity u is the solution of the forward nonlinear Stokes problem (1a)–(1e) for a given basal sliding 
parameter field β , and B is an observation operator that restricts the model ice velocity field to the top surface. Since the 
observed surface flow velocities uobs can vary over three or more orders of magnitude, we normalize the data misfit term 
by |uobs|2 + ε, where ε is a small constant to prevent division by zero.

The regularization term

R(β) := 1

2
‖A κ (β − β0)‖2

L2(
)
(4)

penalizes oscillatory components of the basal sliding parameter field on the basal surface of the ice, thus restricting the 
solution to smoothly varying fields. Here β0 is a reference basal sliding parameter, the differential operator A is defined as

A (β) :=
{ −γ ��β + δβ in �b,

(γ ∇�β) · ν on ∂�b,
(5)

where γ > 0 is the regularization parameter that controls the strength of the imposed smoothness relative to the data 
misfit, δ > 0, typically small compared to γ , is added to make the regularization operator invertible, ∇� is the tangential 
gradient, �� is the Laplace–Beltrami operator, and ν denotes the outward unit normal on ∂�b . The regularization operator 
is thus a positive definite elliptic operator of order 4κ . The need for such a regularization stems from the fact that small 
wavelength components of the basal sliding parameter field cannot be inferred from surface velocity observations due to the 
smoothing nature of the map from β to Bu(β) [34]. In the absence of such a term, the inverse problem is ill-posed, that is, 
its solution is not unique and is highly sensitive to errors in the observations (for general references on regularization in 
inverse problems, see e.g., [35,36]).

When solving the deterministic inverse problem, a value of κ = 1
2 within the regularization operator (4) (which cor-

responds to classical H1-type Tikhonov regularization) suffices for well-posedness. On the other hand, in the Bayesian 
inference framework (discussed in Section 4), in which the regularization term (4) reflects prior knowledge on the basal 
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sliding parameter field, higher orders of the elliptic regularization operator are required for well-posedness, depending on 
the spatial dimension of the domain 
 [37]. For example, sufficient values are κ = 1

2 in one dimension and κ = 1 in two 
and three dimensions. In this setting, A −κ is the covariance operator of the prior distribution. The Green’s function of A κ

at a point x describes the correlation between the parameter value at x and values elsewhere. Our choice of differential 
operator makes this correlation decay smoothly with increasing distance. In practice, this allows us to apply a dense spatial 
correlation operator by inverting A κ without storing a dense matrix.

3.2. Inverse problem solver: inexact Newton-CG

We solve the optimization problem (3) with an inexact matrix-free Newton-CG method. This amounts to (approximately) 
solving the linear system that arises at each Newton iteration,

H (βk)�β = −G (βk), (6)

by the conjugate gradient method, and then updating β by

βk+1 := �β + αkβk.

Here, G (β) and H (β) are the gradient and Hessian, respectively, of J (β), both with respect to β , and αk is a step length 
chosen by a suitable line search method. The next section presents an efficient method for computation of the gradient via 
a variational adjoint method; in particular, the gradient is given by expression (7), which depends on solutions of forward 
and adjoint Stokes problems. Hessian computations are made tractable by recalling that the CG solver does not require the 
Hessian operator by itself; it requires only the action of the Hessian in a given direction. Operator-free (i.e., matrix-free after 
discretization) computation of this Hessian action (i.e., Hessian-vector product) is presented in Section 4.3, in particular in 
the expression (21); it involves second order adjoints but has a structure similar to the gradient computation.

Details of the inexact Newton-CG method are provided in [34] and references therein. A summary of the components of 
the method is as follows:

• The Newton system is solved inexactly by early termination of CG iterations via Eisenstat–Walker (to prevent oversolv-
ing) and Steihaug (to avoid negative curvature) criteria.

• Preconditioning is effected by the inverse of the (elliptic) regularization operator, which is carried out by multigrid 
V-cycles.

• Globalization is by an Armijo backtracking line search.
• Continuation on the regularization is carried out to warm-start the Newton iterations, i.e., we initially use a large value 

of γ in (5) and decrease γ during the iteration to the desired value.
• As elaborated in Sections 3.3 and 4.3, gradients and Hessian actions at each CG iteration are expressed in terms of 

solutions of forward and adjoint PDEs, and their linearizations.
• Parallel implementation of all components, whose cost is dominated by solution of forward and adjoint PDEs and 

evaluation of inner product-like quantities to construct gradient and Hessian action quantities [38].

Parallel and algorithmic scalability follow as a result of the following properties. Because the dominant components of 
the method can be expressed as solutions or evaluations of Stokes-like systems and inner products, parallel scalability—
that is, maintaining high parallel efficiency as the number of cores increases—is assured whenever a scalable solver for the 
underlying PDEs is available (as demonstrated in Section 2). The remaining ingredient needed to obtain overall scalability is 
that the method exhibit algorithmic scalability—that is, the number of iterations does not increase with increasing problem 
size. This is indeed the case: for a wide class of nonlinear inverse problems, the number of outer Newton iterations and of 
inner CG iterations is independent of the mesh size and hence parameter dimension, as will be demonstrated in Section 3.4. 
This is a consequence of the use of a Newton solver, of the compactness of the Hessian of the data misfit term in (3), and 
the preconditioning by the inverse of the regularization operator so that the resulting preconditioned Hessian is a compact 
perturbation of the identity, for which Krylov subspace methods exhibit mesh-independent iterations [39].

3.3. Gradient computation via a variational adjoint method

The Newton-CG method described in the previous section requires computation of the (infinite-dimensional) gradient 
G (β), which is the Fréchet derivative of J (β) with respect to β . Using the Lagrangian formulation and variational calculus, 
we can derive an expression for G (β) at an arbitrary point β in parameter space [34]; its strong form is given by

G (β) := exp(β) T u · T v + A 2κ (β − β0) on �b, (7)

where the forward velocity/pressure pair (u, p) satisfies the forward Stokes problem (1), and the adjoint velocity/pressure 
pair (v, q) satisfies the adjoint Stokes problem,

∇ · v = 0 in 
, (8a)

−∇ · σ v = 0 in 
, (8b)
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σ v n = −B∗�(Bu − uobs) on �t, (8c)

Tσ v n + exp(β)T v = 0, v · n = 0 on �b. (8d)

Here, � accounts for the pointwise scaling by (|uobs|2 + ε)−1 in (3), and the adjoint stress σ v is given in terms of the 
adjoint strain rate ε̇v by

σ v := 2η(u)
(
I + 1 − n

n

ε̇u ⊗ ε̇u

ε̇u · ε̇u

)
ε̇v − Iq, (9)

where I is the fourth order identity tensor. The adjoint Stokes problem has several notable properties: (1) its only source 
term is the misfit between observed and predicted surface velocity on the top boundary; (2) while the forward problem is 
a nonlinear Stokes problem, the adjoint Stokes problem is linear in the adjoint velocity and pressure, and is characterized 
by a linearized Stokes operator with a 4th-order tensor anisotropic effective viscosity with anisotropic component that acts 
in the direction of the forward strain rate ε̇u ; and (3) the adjoint Stokes operator is the same operator as the Jacobian that 
arises in Newton’s method for solving the forward (nonlinear) Stokes problem (as a consequence of its self-adjointness). 
Because of this equivalence, we use the same discretization method and mesh, linear solver, and preconditioner for the 
adjoint problem as was presented for (a Newton step of) the forward problem in Section 2. Use of the same discretization 
guarantees so-called gradient consistency [34].

In summary, to compute the gradient (7) for a given β field, we first solve the forward nonlinear Stokes problem (1)
for the forward velocity/pressure pair (u, p), and then using this forward pair, we solve the adjoint problem (8) for the 
adjoint velocity/pressure pair (v, q). Finally, both pairs of fields are used to evaluate the gradient expression (7) at any 
point on the basal surface �b or its boundary ∂�b. The action of the Hessian in a given direction could be computed by 
directional differences of gradients, using the method just described to compute the gradient (necessitating a nonlinear 
forward Stokes solve for each gradient evaluation). However, it is more efficient to derive expressions for the Hessian action 
in infinite-dimensional form and compute with them since only a linearized forward solve is required for each Hessian 
action; presentation of these expressions will be deferred to Section 4.3, where the Hessian plays an important role in 
characterizing the uncertainty in the solution of the inverse problem.

3.4. Inversion results

Here we assess the performance of the inversion algorithm of the previous section, and present continental-scale inver-
sion results for Antarctica. The observational data are the Antarctic ice sheet surface ice velocities obtained using satellite 
synthetic aperture radar interferometry (InSAR) [40]. We initialize the Newton iteration with a constant basal sliding param-
eter field, whose value is such that the ice is strongly connected to the bedrock and thus little sliding occurs. The iteration 
is terminated as soon as the norm of the gradient of J is decreased by a factor of 105.

First we study the performance of the inexact Newton-CG method described in the previous section as the parameter 
and data dimensions that characterize the inverse problem grow. Both of these dimensions are tied to the mesh size, since 
both the basal sliding parameter and observational surface velocity are treated as continuous fields. To make this study 
tractable, the inversion domain is limited to the Pine Island Glacier region. Performance is characterized in terms of the 
number of linear or linearized Stokes systems that must be solved, since these are the core kernels underlying objective 
function, gradient, and Hessian-vector product computations, and thus overwhelmingly dominate the run time (the cost of 
the remaining linear algebra associated with the Newton-CG optimization method is negligible relative to that of the Stokes 
solves).

Table 2 presents algorithmic performance for a sequence of increasingly finer meshes, and hence increasing state, pa-
rameter, and data dimensions. The regularization operator for these cases is the Laplacian, i.e., in the operator A defined by 
(5), we take k = 1

2 , with δ = 0. We also set the value of the reference basal sliding parameter field β0 in (4) to 0. An L-curve 
criterion is employed to determine an optimal value of the regularization parameter. The L-curve criterion requires solution 
of several inverse problems with different values of γ . Fig. 2 depicts the L-curve for the inverse problem defined by the 
first row of Table 2. Based on this criterion, the regularization parameter for all tests is taken to be 10−1. As can be seen 
in Table 2, the number of Newton and CG iterations required by the inexact Newton-CG inverse solver is insensitive to 
the parameter and data dimensions, when scaling from 10K to 1.5M inversion parameters (and 96K to 23M states). Thus, 
the number of Stokes solves does not increase with increasing inverse problem size, leading to a perfectly scalable inverse 
solver.

Fig. 3 depicts the solution of the ice sheet inverse problem, i.e., the reconstruction of the Antarctic basal sliding parameter 
field β from InSAR observations of surface ice flow velocity and the nonlinear Stokes ice flow model. Note that the basal 
sliding parameter field varies over nine orders of magnitude. Low (red) and high (blue) values of β represent low and high 
resistance to basal sliding and correlate with fast and slow ice flow, respectively. As can be seen, weak resistance to basal 
sliding extends deep into the interior of the continent.

Fig. 4 addresses the question of how successful the inversion is in creating a model that explains the data. The top image 
portrays the observed surface velocity field over the continent, which varies widely from a few meters per year in the 
interior of the continent (in dark blue), to several kilometers per year in the fast flowing ice streams and outlet glaciers (in 
bright red). The bottom image shows the surface velocity field that has been reconstructed from solution of the nonlinear 
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Table 2
Algorithmic scalability of inverse solver for the ice sheet inverse problem posed on the Pine Island Glacier region of Antarctica. Number of Newton and CG 
iterations and number of linearized Stokes solves for a sequence of increasingly finer meshes (and hence inversion parameters) for the inexact Newton-CG 
method. The first column (#sdof) shows the number of degrees of freedom for the state variables; the second column (#pdof) shows the number of 
degrees of freedom for the inversion parameter field; the third column (#N) reports the number of Newton iterations; columns four (#CG) and five (avgCG) 
report the total and the average (per Newton iteration) number of CG iterations; and the last column (#Stokes) reports the total number of linear(ized) 
Stokes solves (from forward, adjoint, and incremental forward and adjoint problems). The Newton iterations are terminated when the norm of the gradient 
is decreased by a factor of 105. The CG iterations are terminated when the norm of the residual of the Newton system drops below a tolerance that is 
proportional to the norm of the gradient, per the Eisenstat–Walker criterion corresponding to “Choice 2” in [41, Section 2] (with safeguards as described in 
Section 2.1 of the same). These results illustrate that the cost of solving the inverse problem by the inexact Newton-CG method, measured by the number 
of Stokes solves, is independent of the parameter dimension. The cost is also independent of the data dimension, since the surface observational velocity 
field is refined with decreasing mesh size, just as the basal sliding parameter field is refined.

#sdof #pdof #N #CG avgCG #Stokes

95,796 10,371 42 2718 65 7031
233,834 25,295 39 2342 60 6440
848,850 91,787 39 2577 66 6856

3,372,707 364,649 39 2211 57 6193
22,570,303 1,456,225 40 1923 48 5376

Fig. 2. L-curve-based regularization parameter selection. Each point (in blue) on the curve represents the solution of an inverse problem for a different 
choice of the value of the regularization parameter γ (shown in red). For each value of γ , the vertical axis plots the magnitude of the regularization term 
R(β) evaluated at the optimum value of β; the horizontal axis plots the value of the data misfit term i.e., the first term in J (β) defined by (3), also 
evaluated at the optimum value of β . The L-curve criterion takes as the “optimum” regularization parameter the value at the point of maximum curvature, 
in this case γ ≈ 0.1. The criterion posits this value of γ as the best tradeoff between minimizing the data misfit and controlling small-scale variations due 
to data noise in the resulting β field. (For interpretation of the references to color in this figure, the reader is referred to the online version of this article.)

Stokes ice flow model using the inferred basal sliding parameter field. By visual inspection, we can see that the two surface 
velocity fields agree well, particularly in fast flow regions. The difference between the two images reflects the ill-posed 
nature of the inverse problem, for which data noise and model inadequacy can amplify errors in poorly-inferred features 
of the inversion parameter field. Nevertheless, the inversion is successful in inferring a basal sliding parameter field and 
resulting ice sheet model that is able to fit the data well, particularly in the critical regions of the ice sheet that impact sea 
level (i.e., the fast flowing ice streams of marine ice sheets that deliver the bulk of the mass flux to the ocean, and are most 
sensitive to forcing changes at ice–ocean interfaces [42]).

Despite this success in fitting the data, ultimately we are still dealing with an ill-posed inverse problem in which the 
“true solution” cannot be found exactly. The question we must address is: what confidence do we have in the inverse solu-
tion we have obtained? The deterministic inverse problem described in this section is not equipped to answer this question. 
Instead, we turn to the framework of Bayesian inference, which provides a systematic means of quantifying uncertainty in 
the solution of the inverse problem. In the next section we present algorithms for making the Bayesian framework tractable 
for large-scale ice sheet inverse problems.

4. Bayesian quantification of parameter uncertainty: estimating the posterior pdf of the basal sliding parameter field

In this section we tackle the problem of quantifying the uncertainty in the solution of the ice sheet inverse problem 
discussed in the previous section. We adopt the framework of Bayesian inference [43,44], and in particular its extension 
to infinite-dimensional inverse problems [37]. To keep our discussion compact, we begin by presenting finite-dimensional 
expressions (i.e., after discretization of the parameter space) for the Bayesian formulation of the inverse problem; we refer 
the reader to [6] for elaboration of the infinite-dimensional framework and associated discretization issues for the ice 
sheet inverse problem. Next we discuss a low-rank-based approximation of the posterior covariance (built on a low-rank 
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Fig. 3. Solution of inverse problem of inferring the Antarctic basal sliding parameter field from InSAR surface velocity observations. For visualization pur-
poses, the cube root of the exponential of the basal sliding coefficient is plotted; the actual Robin coefficient exp(β) of the basal sliding boundary condition 
varies over nine orders of magnitude. Low (red) and high (blue) values for the basal sliding parameter represent low and high resistance to sliding, and 
correlate with fast and slow ice flow regions, respectively. (For interpretation of the references to color in this figure, the reader is referred to the online 
version of this article.)

Fig. 4. Observed (top) and reconstructed via solution of the inverse problem (bottom) surface velocity fields. In the top image, we also highlight the names 
and locations of the largest ice shelves, the extensions of the ice sheet onto the ocean. Most of the mass from the fast flowing ice streams contributes 
to ice shelves, and this mass is, over time, released to the ocean due to melting and iceberg calving. (For interpretation of the references to color in this 
figure, the reader is referred to the online version of this article.)

approximation of the Hessian of the data misfit) that permits very large parameter dimensions. We then present expressions 
that show how the low-rank approximation of this Hessian can be computed for the ice sheet inverse problem, and discuss 
properties of the Hessian that, in combination with the proposed algorithm, permit computation of the uncertainty in 
the inverse solution in a fixed number of forward/adjoint solves, independent of the parameter dimension. Finally, the 
methodology is applied to the large-scale Antarctic ice sheet inverse problem.
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4.1. Bayesian solution of the inverse problem

In the Bayesian formulation, we state the inverse problem as a problem of statistical inference over the space of uncertain 
parameters, which are to be inferred from data and a physical model. The resulting solution to the statistical inverse problem 
is a posterior distribution that assigns to any candidate set of parameter fields our belief (expressed as a probability) 
that a member of this candidate set is the “true” parameter field that gave rise to the observed data. When discretized, 
this infinite-dimensional inverse problem leads to a large-scale problem of inference over the discrete parameters β ∈ R

n , 
corresponding to degrees of freedom in the parameter field mesh.

The posterior probability distribution combines the prior pdf πprior(β) over the parameter space, which encodes any 
knowledge or assumptions about the parameter space that we may wish to impose before the data are considered, with 
a likelihood pdf πlike(dobs|β), which explicitly represents the probability that a given set of parameters β might give rise to 
the observed data dobs ∈R

m . Bayes’ Theorem then states the posterior pdf explicitly as

πpost(β|dobs) ∝ πprior(β)πlike(dobs|β). (10)

Note that the infinite-dimensional analog of (10) cannot be stated using pdfs but requires Radon–Nikodym derivatives [37].
For many problems, it is reasonable to choose the prior distribution to be Gaussian. If the parameters represent a spatial 

discretization of a field, the prior covariance operator usually imposes smoothness on the parameters. This is because rough 
components of the parameter field are typically not observable from the data and must be determined by the prior to result 
in a well-posed Bayesian inverse problem. Here, we use elliptic PDE operators to construct the prior covariance, which 
allows us to build on fast, optimal complexity solvers. More precisely, the prior covariance operator is the inverse of the 
square of the Laplacian-like operator (5), namely Cprior := A −2 = (−γ�� + δ I)−2, where γ , δ > 0 control the correlation 
length and the variance of the prior operator. This choice of prior ensures that Cprior is a trace-class operator, guaranteeing 
bounded pointwise variance and a well-posed infinite-dimensional Bayesian inverse problem [37,45].

The difference between the observables predicted by the model and the actual observations dobs (velocity observations 
on the ice sheet’s surface) is due to both measurement and model errors, and is represented by the independent and 
identically distributed Gaussian random variable “noise” vector e = f (β) −dobs ∈R

m , where f (·) is the (generally nonlinear) 
operator mapping model parameters to output observables. Evaluation of the parameter-to-observable map f (β) requires 
solution of the nonlinear Stokes ice flow equations (1) followed by extraction of the surface ice flow velocity field, i.e., it is 
a discretization of Bu(β) in (3). Restating Bayes’ theorem with Gaussian noise and prior, we obtain the statistical solution 
of the inverse problem, πpost(β), as

πpost(β) ∝ exp
(

− 1

2
‖ f (β) − dobs‖2

�−1
noise

− 1

2
‖β − βprior‖2

�−1
prior

)
, (11)

where βprior is the mean of the prior distribution, �prior ∈ R
n×n is the covariance matrix for the prior that arises upon 

discretization of Cprior, and �noise ∈ R
m×m is the covariance matrix for the noise, which takes over the role of the scaling 

matrix � from the deterministic formulation presented in Section 3.2.
As is clear from the expression (11), despite the choice of Gaussian prior and noise probability distributions, the posterior 

probability distribution need not be Gaussian, due to the nonlinearity of f (β). The non-Gaussianity of the posterior poses 
challenges for computing statistics of interest for typical large-scale inverse problems, since πpost is often a surface in high 
dimensions, and evaluating each point on this surface requires the solution of the forward model. Numerical quadrature to 
compute the mean and covariance matrix, for example, is completely out of the question. The method of choice is Markov 
chain Monte Carlo (MCMC), which judiciously samples the posterior so that sample statistics can be computed. But the 
use of MCMC for large-scale inverse problems is still prohibitive for expensive forward problems (such as those governed 
by the nonlinear PDEs of ice sheet flow) and high-dimensional parameter spaces (such as the O (105–106) parameters 
characterizing the basal sliding parameter field), since even for modest numbers of parameters, the number of samples 
required can be in the millions (see for example the discussion in [6,46]). The need to execute millions of forward ice sheet 
model simulations is simply not feasible, even with today’s multi-petaflops systems.

We are thus led to make a quadratic approximation of the negative log of the posterior (11), which results in a Gaussian 
approximation of the posterior N (βMAP, �post). The mean of this posterior distribution, βMAP, is the parameter vector 
maximizing the posterior (11), and is known as the maximum a posteriori (MAP) point. It can be found by minimizing the 
negative log of (11), which amounts to solving the optimization problem (3) (i.e., the deterministic inverse problem) with 
appropriately weighted norms, i.e.,

βMAP := arg min
β

(
− 1

2
‖ f (β) − dobs‖2

�−1
noise

− 1

2
‖β − βprior‖2

�−1
prior

)
. (12)

The posterior covariance matrix �post is then given by the inverse of the Hessian matrix of J at βMAP, namely

�post =
(

H misfit(βMAP) + �−1
prior

)−1
, (13)

where the Hessian of the misfit is given by

H misfit := F ∗�−1 F − F ∗W uβ − W βu F + W ββ . (14)
noise
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Fig. 5. Log-linear plot of spectrum of prior-preconditioned data misfit Hessian for two successively finer parameter/state meshes of the inverse ice sheet 
problem (12). The curves lie on top of each other, indicating mesh independence of the spectrum. This implies that the dominant eigenvalues/eigenvector 
of the parameter field—and thus the information content of the data, filtered through the prior—are independent of the parameter dimension. Moreover, 
since the surface observations are refined with the state mesh, the invariance of the spectrum to mesh refinement also implies that the dominant eigen-
values are independent of the data dimension (once the information content of the data is resolved). The low rank approximation captures this dominant, 
data-informed portion of the spectrum. The eigenvalues are truncated at 0.2.

Here F is the Jacobian matrix of the parameter-to-observable map evaluated at βMAP, F ∗ is its adjoint, and W uβ , W βu , 
and W ββ involve second derivatives of the negative log posterior with respect to the parameters and the states (explicit 
expressions for the ice sheet inverse problem will be given below). The Gaussian approximation will be accurate when 
the parameter-to-observable map f (β) behaves nearly linearly over the support of the posterior. This will be the case not 
only when f (β) is weakly nonlinear, but also for directions in parameter space that are poorly informed by the data (in 
which case f (β) is approximately constant and thus the prior dominates), as well as directions in parameter space that are 
strongly informed by the data (in which case the posterior variance is small and thus the linearization of f (β) is accurate 
over the support of the posterior). For the present work, in which we tackle a massive scale Bayesian inverse problem 
(∼ 106 parameters) governed by large-scale ice sheet flow in Antarctica, all known MCMC methods will be prohibitive, 
so we cannot compare our Hessian-at-the-MAP-based Gaussian approximation with full sampling of the posterior. However, 
in [6], we compare this Gaussian approximation with several variants of MCMC sampling of the posterior for a model 2D ice 
flow problem with a moderate number of parameters (∼100), and conclude that the Hessian-based Gaussian approximation 
can be appropriate, both as a proposal for MCMC, as well as a stand-alone approximation of the posterior.

4.2. Low-rank based posterior covariance approximation

As stated above, the Gaussian approximation of the posterior (11), with covariance matrix �post (13) that involves the 
Hessian of the data misfit evaluated at the MAP point (14), is still intractable. The primary difficulty is that the large 
parameter dimension n prevents any representation of the posterior covariance �post as a dense operator. In particular, 
the Jacobian of the parameter-to-observable map, F , is formally a dense matrix, and requires n forward PDE solves to 
construct explicitly. This is intractable when n is large and the forward PDEs are expensive, as in our case of Antarctic ice 
sheet flow. However, a key feature of the operator F is that its action on a (parameter field-like) vector can be formed 
by solving a (linearized) forward PDE problem; similarly, the action of its adjoint F ∗ on a (observation-like) vector can be 
formed by solving a (linearized) adjoint PDE. Moreover, for many ill-posed inverse problems, the Hessian matrix of the data 
misfit term in (3), given by (14), is a discretization of a compact operator, i.e., its eigenvalues collapse to zero. This can be 
understood intuitively, since only the modes of the parameter field that strongly influence the ice velocity are present in 
the dominant spectrum of (14). In many ill-posed inverse problems, numerous modes of the parameter field (for example, 
highly oscillatory ones) will have negligible effect on the observables. The range space thus is effectively finite-dimensional 
even before discretization (and therefore independent of any mesh), and the eigenvalues decay, often rapidly, to zero. Fig. 5
illustrates the rapid spectral decay of the data misfit Hessian stemming from our Antarctic ice sheet inverse problem, 
demonstrating that only about 5000 (out of 1,190,403) modes of the basal sliding parameter field can be inferred from the 
data (on the fine mesh). Next we exploit this low-rank structure and the ability to form matrix-free Hessian actions to 
construct scalable algorithms to approximate the posterior covariance operator.

Rearranging the expression for �post in (13) to factor out �prior gives

�post = (
�prior H misfit + I

)−1
�prior. (15)

This factorization exposes the prior-preconditioned Hessian of the data misfit,

H̃ misfit := �prior H misfit. (16)
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Note that H̃ misfit is symmetric with respect to the inverse prior-weighted inner product. If a square root of �prior is available, 
one can alternatively use a symmetric preconditioning of the data misfit Hessian by the prior covariance operator [47,45]. 
This results in a prior-preconditioned data misfit Hessian that is symmetric with respect to the Euclidean inner product.

To construct a low-rank approximation of H̃ misfit, we consider the generalized eigenvalue problem

H misfitW = �−1
priorW 	, (17)

where 	 = diag(λi) ∈R
n×n contains the generalized eigenvalues and the columns of W ∈R

n×n the generalized eigenvectors. 
Because �prior is symmetric positive definite and H misfit is symmetric positive semi-definite, 	 is non-negative and W is 
orthogonal with respect to �−1

prior, so we can scale W so that W T �−1
priorW = I . Defining V := �−1

priorW , we can rearrange 
(17) to get

�prior H misfit = W 	V T . (18)

When the generalized eigenvalues {λi} decay rapidly, we can extract a low-rank approximation of H̃ misfit by retaining only 
the r largest eigenvalues and corresponding eigenvectors,

H̃ misfit ≈ W r	r V T
r . (19)

Here, W r ∈ R
n×r contains only the r eigenvectors of H̃ misfit that correspond to the r largest eigenvalues, which are assem-

bled into the diagonal matrix 	r = diag(λi) ∈R
r×r , and V r = �−1

priorW r .
Here, we use randomized SVD algorithms [48,49] to construct the approximate spectral decomposition. Their perfor-

mance is comparable to Krylov methods such as Lanczos, which has been used for low-rank approximations of Hessians 
in very high dimensions in [47,45,50]. Both algorithms require only the action of the Hessian on vectors; we show how 
to do this for the ice sheet Hessian operator in Section 4.3. However, randomized methods have a significant edge over 
deterministic methods for large-scale problems, since the required Hessian matrix-vector products are independent of each 
other, providing asynchronicity and fault tolerance.

Once the low-rank approximation (19) has been constructed, we proceed to obtain the posterior covariance matrix. The 
Sherman–Morrison–Woodbury formula is employed to perform the inverse in (15),

(
H̃ misfit + I

)−1 = I − W r Dr V T
r + O

⎛
⎝ n∑

i=r+1

λi

λi + 1

⎞
⎠ ,

where Dr := diag(λi/(λi + 1)) ∈ R
r×r . The last term in this expression captures the error due to truncation in terms of 

the discarded eigenvalues; this provides a criterion for truncating the spectrum, namely that r is chosen such that λr is 
small relative to 1. With this low-rank approximation, the final expression for the approximate posterior covariance follows 
from (15),

�post ≈ (I − W r Dr V T
r )�prior = �prior − W r Dr W T

r . (20)

Note that (20) expresses the posterior uncertainty as the prior uncertainty less any information gained from the data, fil-
tered through the prior (as a consequence of choosing the prior-preconditioned data misfit Hessian as the operator whose 
spectrum is truncated). The retained eigenvectors of the prior-preconditioned data misfit Hessian are those modes in pa-
rameter space that are simultaneously well-informed by the data and assigned high probability by the prior. Fig. 6 displays 
several of these eigenvectors. The low rank update of the prior covariance in (20), which is based on the low rank approxi-
mation (19) of the prior-preconditioned Hessian of the data misfit, has recently been shown to be the optimal rank-r update 
with respect to several important loss functions [51].

4.3. The action of the Hessian operator

In this section we show that the Hessian-vector products needed in the randomized low-rank algorithms described above 
can be computed efficiently and matrix-free. The action of the Hessian operator evaluated at a basal sliding parameter field 
β in a direction β̂ is given by

H (β)β̂ := exp(β)(β̂T u · T v + T û · T v + T u · T v̂) + A 2κ (β̂), (21)

where (û, p̂) satisfy a certain linearized forward Stokes equation, which we call the incremental forward Stokes equations

∇ · û = 0 in 
 (22a)

−∇ · σ û = 0 in 
 (22b)

σ ûn = 0 on �t (22c)

û · n = 0 on �b (22d)

T σ ûn + exp(β)T û = −β̂ exp(β)T u on �b, (22e)
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Fig. 6. Eigenvectors of the prior-preconditioned data misfit Hessian corresponding (from left to right and top to bottom) to the 1st, 2nd, 100th, 200th, 
500th, and 4000th eigenvalues. Note that different eigenvectors localize in different regions of Antarctica, and that eigenvectors corresponding to smaller 
eigenvalues are increasingly more oscillatory (and thus inform smaller length scales of the basal sliding parameter field) but are also increasingly less 
informed by the data.

with the incremental forward stress

σ û := 2η(u)
(
I + 1 − n

n

ε̇u ⊗ ε̇u

ε̇u · ε̇u

)
ε̇û − I p̂,

and (v̂, ̂q) satisfy a linearized version of the adjoint equation, the incremental adjoint Stokes equations

∇ · v̂ = 0 in 
 (23a)

−∇ · σ v̂ = −∇ · τ û in 
 (23b)

σ v̂ n = n − B∗�Bû − τ ûn on �t (23c)

v̂ · n = 0 on n�b (23d)

T σ v̂ n + exp(β)T v̂ = −T τ ûn on �b, (23e)

where the incremental adjoint stress σ v̂ is given by

σ v̂ := 2η(u)
(
I + 1 − n

n

ε̇u ⊗ ε̇u

ε̇u · ε̇u

)
ε̇ v̂ − I q̂,

and τ û = 2η(u)�ε̇û , where

� := 1 − n

n

[
ε̇u ⊗ ε̇v + ε̇v ⊗ ε̇u

ε̇u · ε̇u
+ ε̇u · ε̇v

ε̇u · ε̇u

(
1 − 3n

n

ε̇u ⊗ ε̇u

ε̇u · ε̇u
+ I

)]
.

We see that the incremental forward and incremental adjoint Stokes equations are linearized versions of their forward 
and adjoint counterparts, having the same (linearized) operator and differing only in the source terms. Thus, computation 
of Hessian actions on vectors amount to solution of a pair of forward/adjoint (linearized) Stokes equations, similar to the 
computation of the gradient. Since the gradient and Hessian action require just one and two linearized Stokes solves, re-
spectively, they are significantly cheaper to evaluate than solving the (nonlinear) forward problem, which typically requires 
an order of magnitude more linearized Stokes solves.
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4.4. Scalability of Bayesian solution of the inverse problem

We now discuss the overall scalability of our algorithms for Bayesian solution of the inverse problem. First, we character-
ize the scalability of construction of the low-rank-based approximate posterior covariance matrix in (20). As stated before, 
the parameter-to-observable map F cannot be constructed explicitly, since it requires n linearized forward Stokes solves. 
However, as elaborated above, its action on a vector can be computed by a single linearized Stokes solve, regardless of 
the number of parameters n and observations m. Similarly, the action of F ∗ on a vector can be computed via a linearized 
adjoint Stokes solve. Moreover, the prior is usually much cheaper to apply than a forward/adjoint solve (here, it is a scalar 
elliptic solve on the basal boundary). Therefore, the cost of applying H̃ misfit to a vector—and thus the per iteration cost of 
the randomized SVD algorithm—is dominated by a pair of linearized forward and adjoint Stokes solves.

The randomized SVD algorithm requires a number of matrix-vector products proportional to the effective rank r of 
the matrix [49,48]. Thus, the remaining component to establish scalability of the low-rank approximation of H̃ misfit is 
independence of r—and therefore the number of matrix-vector products, and hence Stokes solves—from the parameter 
dimension n. This is the case when H misfit in (14) is a (discretization of a) compact operator, and when preconditioning by 
�prior does not destroy the spectral decay. This situation is typical for many ill-posed inverse problems, in which the prior 
is either neutral or of smoothing type. Hence, a low-rank approximation of H̃ misfit can be made that does not scale with 
parameter or data dimension, instead depending only on the information content of the data, filtered through the prior. This 
is indeed the case for our ice sheet inverse problem, as demonstrated in Fig. 5.

Once the r eigenpairs defining the low rank approximation have been computed, estimates of uncertainty can be com-
puted by interrogating �post in (20) at a cost of just r inner products (which are negligible) plus elliptic solves representing 
the action of the prior �prior on a vector (here carried out with an algebraic multigrid solver and therefore algorithmically 
scalable). For example, samples can be drawn from the Gaussian defined with a covariance �post, a row/column of �post
can be computed, and the action of �post in a given direction can be formed, all at cost that is O (rn) in the number of 
inner products in addition to the O (n) cost of the multigrid solve. Moreover, the posterior variance field, i.e., the diagonal 
of �post, can be found with O (rn) linear algebra plus O (r) multigrid solves.

4.5. Samples from the prior and Gassianized posterior

In this section we provide some results that illustrate the quantification of uncertainty in the solution of the Antarctic 
ice sheet inverse problem. The number of degrees of freedom was 3,785,889 for each of the discretized state-like variables 
(state, adjoint, incremental state, and incremental adjoint velocities and pressures) and 409,545 for the uncertain basal 
sliding parameter field. The problem was solved on 1024 processor cores. We used the Laplacian prior operator with κ = 1, 
γ = 10, and δ = 10−5, and took a zero mean of the basal sliding parameter field, i.e., β0 = 0. To characterize the noise, 
we used a diagonal noise covariance matrix �noise with entries σ i

noise = 0.1(‖di
obs‖2 + ε)1/2 for i = 1, . . . , m, with ε = 10−9. 

That is, σ i
noise is (at least) 10% of the velocity magnitude at the ith observational data point.

To compute the MAP point via solution of the optimization problem (12), 213 (outer) Newton iterations were necessary 
to decrease the nonlinear residual by a factor of 103. In each of these outer Newton iterations, the nonlinear forward Stokes 
problem has to be solved, for which we use an (inner) Newton method. These inner Newton solves are terminated after the 
residual is decreased by a factor of 108, which takes an average of 5 Newton iterations, each requiring a linearized Stokes 
solve. In addition to the nonlinear Stokes solve, each (outer) Newton iteration requires computation of the gradient, which 
costs one linearized Stokes solve, and inexact solution of the (outer) Newton system (6) using CG, which requires a number 
of Hessian-vector products. The average number of CG iterations per (outer) Newton step was 239. Each Hessian-vector 
product requires a pair of linearized Stokes solves, one incremental forward and one incremental adjoint. The tolerance for 
these incremental Stokes solves was set to 10−6. Altogether, finding the MAP point required a total of 107,578 linear(ized) 
Stokes solves.

We approximated the covariance matrix at the MAP point via a low-rank representation employing 5000 products of 
the Hessian matrix with random vectors; hence, the cost of this approximation is 10,000 incremental forward/adjoint (lin-
earized) Stokes solves. Thus, the cost (measured in Stokes solves) of quantifying the uncertainty in the MAP solution is 
about an order of magnitude less than that of finding the MAP point.

Fig. 7 depicts the MAP point, and Fig. 8 shows the prior and posterior pointwise standard deviations. One observes 
that the uncertainty is vastly reduced everywhere in the domain, and that the reduction is greatest along the fast ice flow 
regions. In Fig. 9 we show samples (of the basal sliding parameter field) from the prior (top row) and from the Gaussian 
approximation of the posterior (bottom row) pdf. The difference between the two sets of samples reflects the information 
gained from the data in solving the inverse problem. The differences in the basal sliding parameter field across the posterior 
samples demonstrate that in the fast ice flow regions there is small variability, while in the center and in West Antarctica, 
we observe larger variability in the inferred parameters, reflecting uncertainty due to insensitivity of surface velocities to 
the basal sliding in slow velocity and small velocity gradient regions.

This uncertainty in the inference of the basal sliding parameter field, however, is merely an intermediate quantity. What 
is of ultimate interest is predictions of output quantities of interest, with associated uncertainties, using the ice sheet model 
with inferred parameters and their associated uncertainties, which have been computed using the methods of this section. 
This is the subject of the next section.
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Fig. 7. The posterior mean. Low (red) and high (blue) values for the basal sliding parameter correlate with fast and slow ice flow regions, respectively.

Fig. 8. This figure shows the standard deviations of the pointwise marginals of the prior distribution (left) and of (the Gaussian approximation of) the 
posterior distribution (right).

5. Prediction with quantified uncertainty: forward propagation of basal sliding parameter uncertainty to mass flux 
prediction

Once the inverse problem to infer the unknown basal sliding parameter field from observed surface velocities has been 
solved, and the uncertainty in this inference quantified through a Gaussian approximation of the posterior (made tractable 
by a low-rank representation of the prior-preconditioned data misfit Hessian), we are ready to propagate the uncertain 
basal sliding parameter field through the ice flow model to yield a prediction of our quantity of interest with associated 
uncertainty. Ultimately our interest is in predicting the ice mass flux to the ocean several decades in the future, under 
various climate change scenarios. However, this requires a model of the ice sheet as an evolving body, more mechanistic 
basal boundary conditions, and coupling to atmosphere and ocean models. In the present work, we have instead chosen to 
illustrate our data-to-prediction framework with a simpler quantity of interest Q given by the ice mass flux to the ocean 
using the steady state ice sheet model employed in the previous sections. Below, we describe scalable algorithms for this 
final step of our data-to-prediction framework.

Formally, this amounts to solving a system of stochastic PDEs given by the nonlinear Stokes forward model with the un-
certain basal sliding parameter described by a Gaussian random field. While the low rank approximation of Section 4.2 has 
resulted in significant dimensionality reduction (from O (106) to O (103), as seen in Fig. 5), the effective dimension, ∼4000, 
is still large in absolute terms. Given that this many modes in parameter space are required to quantify the uncertainty 
in the basal sliding coefficient parameters, and given the expense of solving the large-scale highly-nonlinear forward ice 
sheet flow problem, the use of Monte Carlo sampling methods would be prohibitive, since millions of forward solves would 
likely be required to characterize the statistics of the prediction quantity. Similarly, for the problem we target, the use of 
polynomial chaos methods would be prohibitive due to the curse of dimensionality that afflicts such methods.
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Fig. 9. Samples from the prior (top row) and Gaussian approximation of the posterior (bottom row) distributions for the basal sliding parameter field. The 
difference between the prior and posterior samples reflects the information gained from the observational data. The large scale features of the posterior 
samples consistently resemble the posterior mean shown in Fig. 7. Note the small variability in the fast ice flow regions, while central and West Antarctica 
exhibit large variability in the inferred basal sliding parameter field.

Instead, consistent with our Gaussian approximation of the Bayesian solution of the inverse problem, and our desire to 
scale to very large parameter dimensions, here we linearize the parameter-to-prediction map at the MAP point, resulting in 
a Gaussian approximation of the prediction pdf, N (Q MAP, �prediction). The mean of this prediction pdf, Q MAP, is computed 
by solving the forward ice sheet flow model (1) using βMAP as the basal sliding parameter, i.e., the MAP point solution of the 
inverse problem. The covariance operator, �prediction, is found by propagating the covariance of the model parameters (which 
is given by the inverse of the Hessian evaluated at βMAP, i.e., H −1(βMAP)), through the linearized parameter-to-prediction 
map, i.e., by

�prediction := F (βMAP)H −1(βMAP)F ∗(βMAP), (24)

where F (βMAP) is the Jacobian of the parameter-to-prediction map, evaluated at the MAP point βMAP, and the Hessian at 
the MAP, H (βMAP), is defined by its action in a direction by (21), which involves solution of the incremental forward (22)
and incremental adjoint (23) Stokes problems.

One of the key ideas to enabling scalability of the prediction-under-uncertainty problem is that the Jacobian of the 
parameter-to-prediction map F (βMAP) can be determined for each prediction quantity Q by computing the gradient of Q
with respect to the parameter field β . In our case, we are interested in using the steady state ice flow model to predict the 
net ice mass flux into the ice shelves, and eventually into the ocean,

Q (β) :=
∫
�o

ρu(β) · n ds, (25)

where �o is an outflow boundary of interest. The gradient of Q with respect to β evaluated at βMAP can then be found 
as follows. First, solve the forward problem (1) with basal sliding parameter field given by βMAP. Then, solve an adjoint 
problem defined for the quantity Q , i.e.,

∇ · v = 0 in 
 (26a)

−∇ · σ v = 0 in 
 (26b)

σ v n = 0 on �t (26c)

σ v n = −ρn on �o (26d)

Tσ v n + exp(βMAP)T v = 0, v · n = 0 on �b (26e)

where the adjoint stress is given by (9). Since we are using the same ice flow model for the prediction problem that was 
used to infer β , the adjoint problem (26) for Q resembles the adjoint problem for the regularized data misfit functional J
in (3), but with a different source term given by the variation of Q with respect to the state variables (u, p). This means 
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Fig. 10. The (logarithm of the) gradient of the prediction quantity Q with respect to the uncertain basal sliding parameter β (top row) and the direc-
tions that jointly maximize uncertainty and sensitivity for the prediction (bottom row) following [52]. For visualization purposes, in the top row we plot 
ln(|F (βMAP)| + 10−10). The quantities of interest are the mass flux of ice into the ocean for the entire boundary (left column), for all of East Antarctica 
(center column), and for the Totten Glacier region (right column). The mean and standard deviation of the prediction probability distribution for the three 
ice mass fluxes are: 1170.83 ± 1080.09, 359.60 ± 1.02, and 71.24 ± 0.30 Gt/a, respectively.

that the adjoint Stokes solver can be reused for this purpose (which in turn is the same as the linearized forward Stokes 
solver). Once the forward velocity u and adjoint velocity v are found, F (βMAP), which is the gradient of Q at βMAP, can be 
found from the gradient expression (7) without the regularization term, i.e., from

F (βMAP) := exp(βMAP) T u · T v on �b. (27)

Note that if a different flow model is used for the prediction phase (such as one governing a dynamically evolving ice sheet), 
then a new adjoint equation and gradient expression will have to be derived for that model for the prediction step.

Now that F (βMAP) has been found, the next step is to form H −1(βMAP)F ∗(βMAP), which could be found by solving a 
linear system using the preconditioned CG method described in Section 3.2. This would require a number of forward/adjoint 
incremental Stokes solves equal to the number of CG iterations. Instead, since H −1(βMAP) is available in the compact form 
given by (20) (based on the low-rank approximation of the prior-preconditioned Hessian of the data misfit), the product 
H −1(βMAP)F ∗(βMAP) can be formed without having to solve incremental Stokes equations, at the cost of just linear algebra 
(vector scalings, additions and inner products). The final step of the inner product of F (βMAP) with H −1(βMAP)F ∗(βMAP)

is straightforward. The result is the covariance of the ice mass flux Q , given uncertainties in the satellite observations of 
surface velocity, uncertainties in the basal sliding parameter field as inferred from the satellite data, and the ice sheet flow 
model and corresponding prediction quantity Q . For a single Q , the prediction density N (Q MAP, �prediction) is univariate. 
The cost to obtain this pdf, once the low rank-based inverse Hessian (20) has been computed in the Bayesian inference 
phase, is just a forward solve followed by an (as always, linear) adjoint solve, i.e., at little cost beyond the forward solve.

Fig. 10 provides results of uncertainty propagation from parameters to predictions following the framework outlined 
above. Recent work on “inference for prediction” has shown that, for linear inverse problems and linear parameter-to-
prediction maps, there is a unique direction in parameter space that influences the prediction quantity of interest [52]. 
Finding this direction involves identifying parameter modes that are both informed by the observational data and also 
required for estimating the quantity of interest. We adopt the inference-for-prediction (IFP) algorithm presented more gen-
erally for multiple quantities of interest in [52]. Denoting the Hessian square root by G := H −1/2(βMAP) and using the 
linearized parameter-to-prediction map F (βMAP), we compute the eigendecomposition ��2�∗ of G ∗F ∗(βMAP)F (βMAP)G . 
Since this operator has rank 1, the eigenvector � corresponding to the only nonzero eigenvalue is given by G ∗F ∗(βMAP), 
and the corresponding eigenvalue is �2 = ‖G ∗F ∗(βMAP)‖2. Following [52], the influential direction for prediction (based on 
linearizations of the parameter-to-observable map and the parameter-to-prediction map) is given by

W = G ��−1/2.

Using the explicit form of � , the influential direction for prediction in the IFP algorithm thus simplifies to W =
G G ∗F ∗(βMAP)�

−1/2 = �−1/2H (βMAP)
−1F ∗(βMAP). This direction, or “mode” of the parameter field, is depicted in the 

bottom row of Fig. 10 for ice mass fluxes over three different portions of the outflow boundary (all of Antarctica, just East 
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Antarctica, and just the Totten Glacier). The mean and standard deviation of the prediction probability distribution for the 
three ice mass fluxes are: 1170.83 ± 1080.09, 359.60 ± 1.02, and 71.24 ± 0.30 Gt/a, respectively. We also computed stan-
dard deviations with the prior covariance and, as expected, found larger values, namely 1327.22, 525.24, and 179.73 Gt/a 
for all of Antarctica, East Antarctica and the Totten Glacier, respectively. The top row of Fig. 10 portrays the gradient of Q
with respect to β , computed using (27) for each case; these plots show the regions in parameter space to which Q is most 
sensitive. Note the differences with the bottom row, which captures not only sensitivity of the prediction quantity to β (i.e., 
the gradient F ), but also uncertainty in the β field (i.e., H −1). The most uncertain regions are not necessarily the most 
sensitive, and vice versa. Since, as implied by Fig. 9, central and West Antarctica exhibit the largest uncertainties, we expect 
these regions to play an important role in the parameter modes shown in the bottom row of Fig. 10, especially where the 
sensitivity with respect to the basal sliding parameter is not dominant, e.g., in the bottom left figure. On the other hand, 
in the center and right figures in the bottom row, focusing on East Antarctica, where the posterior samples suggest lower 
uncertainties, the modes show mixed uncertainty and sensitivity influence.

6. Conclusions

We have presented a scalable framework for solving end-to-end, data-to-prediction problems, presented in the context 
of the flow of the Antarctic ice sheet, and motivated by prediction of its contribution to sea level. We begin with obser-
vational data and associated uncertainty, then infer model parameters from the data (Section 3), quantify uncertainties in 
the inference of the parameters (Section 4), and finally propagate those uncertain model parameters to yield a prediction 
quantity of interest with quantified uncertainties (Section 5). We show that the cost of the entire data-to-prediction framework, 
when measured in forward or adjoint Stokes solves, is a constant independent of the parameter or data dimension. When combined 
with a scalable forward solver such as that presented in Section 2, this results in a data-to-prediction framework that is 
independent of the state dimension and number of processor cores as well.

This scalability is a consequence of three properties of the data-to-prediction process and their exploitation by our 
algorithms: (1) when inferring the parameter field, the data are informative about only a low-dimensional subspace within 
the high-dimensional parameter space, and thus a Newton-CG optimization method, preconditioned by the regularization 
operator, converges in a number of Newton and CG iterations that is independent of the parameter and data dimensions, 
depending only on the information content of the data; (2) when estimating the uncertainty in the inverse solution, the 
same property dictates that the Hessian of the data misfit admits a low rank representation, and this can be extracted 
via randomized SVD in a number of matrix-free Hessian-vector products (each of which requires a pair of incremental 
forward/adjoint Stokes solves) that is also independent of the data and parameter dimensions, and again depends only 
on the information contained within the data; and (3) when propagating the inferred parameter uncertainties forward 
through the ice flow model to yield predictions with quantified uncertainties, the prediction pdf can be formed through the 
action of the inverse Hessian on the gradient of the prediction quantity with respect to the uncertain parameters, which in 
turn is found through an additional adjoint Stokes solve. Thus, the entire data-to-prediction process is sensitive only to the true 
information contained within the data, as opposed to the ostensible data or parameter dimensions.

The uncertainty analysis presented here relies on linearizations of the parameter-to-observable and parameter-to-
prediction maps, leading to Gaussian approximations of the parameter posterior pdf and prediction quantity of interest 
pdf. Ultimately one would like to relax these approximations and fully explore the resulting non-Gaussian pdfs; how to do 
this while retaining scalability for such large-scale complex problems remains an open question, and is a subject of ongoing 
work.
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