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S U M M A R Y
Observations of glacial isostatic adjustment (GIA) allow for inferences to be made about man-
tle viscosity, ice sheet history and other related parameters. Typically, this inverse problem can
be formulated as minimizing the misfit between the given observations and a corresponding
set of synthetic data. When the number of parameters is large, solution of such optimization
problems can be computationally challenging. A practical, albeit non-ideal, solution is to
use gradient-based optimization. Although the gradient of the misfit required in such meth-
ods could be calculated approximately using finite differences, the necessary computation
time grows linearly with the number of model parameters, and so this is often infeasible.
A far better approach is to apply the ‘adjoint method’, which allows the exact gradient to
be calculated from a single solution of the forward problem, along with one solution of the
associated adjoint problem. As a first step towards applying the adjoint method to the GIA
inverse problem, we consider its application to a simpler viscoelastic loading problem in which
gravitationally self-consistent ocean loading is neglected. The earth model considered is non-
rotating, self-gravitating, compressible, hydrostatically pre-stressed, laterally heterogeneous
and possesses a Maxwell solid rheology. We determine adjoint equations and Fréchet kernels
for this problem based on a Lagrange multiplier method. Given an objective functional J
defined in terms of the surface deformation fields, we show that its first-order perturbation can
be written δ J = ∫MS

Kηδ ln η dV + ∫ t1
t0

∫
∂ M K σ̇ δσ̇ dS dt , where δ ln η = δη/η denotes relative

viscosity variations in solid regions MS, dV is the volume element, δσ̇ is the perturbation
to the time derivative of the surface load which is defined on the earth model’s surface ∂M
and for times [t0, t1] and dS is the surface element on ∂M. The ‘viscosity kernel’ Kη de-
termines the linearized sensitivity of J to viscosity perturbations defined with respect to a
laterally heterogeneous reference earth model, while the ‘rate-of-loading kernel’ K σ̇ deter-
mines the sensitivity to variations in the time derivative of the surface load. By restricting
attention to spherically symmetric viscosity perturbations, we also obtain a ‘radial viscosity
kernel’ K η such that the associated contribution to δJ can be written

∫
IS

K ηδ ln η dr , where
IS denotes the subset of radii lying in solid regions. In order to illustrate this theory, we
describe its numerical implementation in the case of a spherically symmetric earth model
using a 1-D spectral element method, and calculate sensitivity kernels for a range of realistic
observables.

Key words: Numerical solutions; Inverse theory; Sea level change; Rheology: mantle.

1 I N T RO D U C T I O N

Observations of glacial isostatic adjustment (GIA) allow inferences to be made about a range of parameters, including mantle viscosity,
lithospheric thickness, past ice sheet thickness and other forms of surface loading, such as lakes and sedimentation (see Peltier 2004 for
a review). Typically, these GIA inverse problems are formulated in terms of minimizing the misfit between a set of GIA observations and
synthetic data calculated using an appropriate set of model parameters.

One approach to solve such problems is to employ the so-called gradient-based optimization methods in which the gradient of the misfit
with respect to the model parameters is used to iteratively update the model in such a way that the misfit is lowered (e.g. Nocedal & Wright
2006). Although gradient-based methods certainly have shortcomings (e.g. convergence to local minima), they can provide a computationally
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Viscoelastic sensitivity kernels 35

feasible solution to large-scale optimization problems, particularly, when the calculation of synthetic data is computationally demanding. The
simplest method for computing the required gradients of the misfit are finite difference schemes based upon a given parametrization of
the model (see e.g. Mitrovica & Peltier 1991 and Peltier 2004 for the application of such techniques to the GIA problem). Unfortunately, the
computational cost of such finite difference derivatives scales like the number of model parameters, and so becomes impractical if there are
many model parameters and if solution of the forward problem is time consuming (e.g. Fichtner et al. 2006; Tape et al. 2007). For the GIA
problem, this issue will be most acutely seen if calculations are performed in laterally heterogeneous earth models that require large-scale
numerical solutions (e.g. Zhong et al. 2003; Latychev et al. 2005).

A better approach to calculating the required gradients is the ‘adjoint method’, which arose within the study of optimal control problems
(e.g. Lions 1970; Tröltzsch 2005) and has been successfully applied in a number of geophysical applications, including seismic tomography
(e.g. Tromp et al. 2005; Liu & Tromp 2008; Tape et al. 2009; Fichtner et al. 2010; Zhu et al. 2012). Using this method, calculation of the
exact gradient requires the forward problem to be solved once, along with one solution of the associated ‘adjoint problem’. The computational
cost of the adjoint method is, therefore, independent of the number of model parameters, and so provides a tremendous computational saving
when compared to finite difference calculations. There are, moreover, extensions of the adjoint method which allow for the calculation of
higher order derivatives of the misfit with respect to the model parameters, and such terms can be usefully employed in the quantification of
the obtainable model resolution (Fichtner & Trampert 2011).

Accurate modelling of GIA requires the solution of a complex system of equations incorporating the viscoelastic relaxation of the
mantle, the response of the fluid outer core, gravitationally self-consistent ocean loading and rotational feedbacks (e.g. Farrel & Clark 1976;
Mitrovica & Milne 2003; Peltier 2004). In order to simplify the presentation of the theory, we have decided to break the problem into smaller
parts, and within this paper we shall neglect the effects of ocean loading and the Earth’s rotation. The resulting ‘viscoelastic loading problem’
considered here will, however, form the basis for later work in which these additional features are incorporated. We note that the present
theory can also with minor modification be applied to the study of post-seismic deformation.

The aim of this paper is to present an application of the adjoint method to the viscoelastic loading problem, and so to provide a
computationally efficient approach for calculating the linearized sensitivity of observations to both mantle viscosity and ice load history.
Extension of the method to include other model parameters, such as lithospheric thickness, is possible, but has yet to be developed. See
Liu & Tromp (2008) for the application of adjoint methods to an analogous seismological problem incorporating boundary perturbations. In
particular, we consider the surface loading of a laterally heterogeneous earth model, and our theory could readily be implemented using a
new generation of fully numerical codes (e.g. Zhong et al. 2003; Latychev et al. 2005).

In our applications of the theory, we have, however, performed calculations only in spherically symmetric earth models. This has been
done only to simplify the necessary calculations, and the results presented are hopefully sufficient to illustrate the potential of the method.
The advantages of the adjoint method over other techniques for computing these gradients are very substantial, and do not depend in any way
upon the numerical methods used. Numerical calculations are included in the paper only to illustrate the basic ideas, and so we do not feel
it necessary nor appropriate to give details about computation times, etc. Instead, the main contribution of this paper is the derivation of the
adjoint problem along with the associated sensitivity kernels. We again stress that this theory is valid in laterally heterogeneous earth models,
and it should be quite simple to implement given access to a suitable code.

1.1 Background on gradient-based optimization

To better motivate our use of the adjoint method, it will be helpful to consider some basic aspects of gradient-based optimization. Let us
write m for an element of the appropriate model space in the viscoelastic loading problem, which we assume to be a normed vector space.
In practice, this model vector will comprise a pair of functions {σ , η} with σ the time-dependent surface load, and η the mantle viscosity.
Associated with a given value of m, we can solve the forward viscoelastic loading problem, and so calculate the misfit between our synthetic
predictions and the observed data. Writing Ĵ for the misfit function, we can then consider the scalar-valued mapping

m �→ Ĵ (m), (1.1)

which associates a real number to each possible model vector.
We seek the model vector m̃, say, which minimizes Ĵ . As is well known, a necessary condition for m̃ to be such a minima is that the

derivative of Ĵ vanishes here. Of course, this condition is not sufficient, and such an m̃ could, for example, be simply a local minima of Ĵ .
We denote the value of this derivative at a point m by D Ĵ (m), and recall that it is a linear functional on the model space defined through the
relation

Ĵ (m + δm) = Ĵ (m) + 〈D Ĵ (m), δm〉 + O(‖δm‖2), (1.2)

where δm is an arbitrary element of the model space, we have written 〈D Ĵ (m), δm〉 for the action of the derivative on the given model
perturbation, and O(‖δm‖2) denotes a term that is of second order in the magnitude of δm (see e.g. Parker 1994 for further details). If the
model space is finite dimensional, the above definition reduces to that of the gradient in multivariable calculus. Importantly, however, this
definition also applies when m is an element of a normed function space, and this additional generality is required for the problem at hand. If
we assume that the model space is in fact a Hilbert space (e.g. a space of square integrable functions), we can identify the derivative D Ĵ (m)
with an element of the model space, and interpret 〈 · , · 〉 as an inner product.
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36 D. Al-Attar and J. Tromp

With these notations, the necessary condition for m̃ to be a local minimum of Ĵ can be written

D Ĵ (m̃) = 0, (1.3)

where 0 denotes the zero vector in the model space. A practical approach for obtaining such an m̃ is through the use of gradient-based
optimization. The simplest method is the ‘steepest descent algorithm’, which iteratively constructs a sequence of model vectors m0, m1, m2 . . .

through

mi+1 = mi − αi D Ĵ (mi ), (1.4)

with the step length αi ≥ 0 obtained by minimizing

α �→ Ĵ [mi − αD Ĵ (mi )]. (1.5)

For this algorithm to make sense, the derivatives D Ĵ (mi ) must, of course, be identified with elements of the model space. We will see below
that this condition need not hold for all choices of model parameters in the viscoelastic loading problem. Under mild assumptions on Ĵ ,
and given enough iterations, the steepest descent algorithm will converge to a local minimum of the misfit function (e.g. convexity of J is
sufficient). There are, of course, a number of similar but more sophisticated iterative schemes that possess better convergence properties (e.g.
Nocedal & Wright 2006). Nonetheless, all such gradient-based methods require repeated evaluations of the derivative of Ĵ with respect to
the model parameters.

The simplest way to compute these derivatives is to use a finite difference approximation. For example, to first order in ‖δm‖ we have

〈D Ĵ (m), δm〉 ≈ Ĵ (m + h δm) − Ĵ (m)

h
, (1.6)

with h a small number. Letting {m1, . . . , mn} be basis vectors in a suitable finite-dimensional subparametrization of the model space, we
can use the above finite difference formula to approximate the n directional derivatives 〈D Ĵ (m), mi 〉 for i = 1, . . . , n, and so estimate the
derivative of Ĵ defined with respect to the given model parametrization. Given a method for solving the forward problem, the advantage of
such finite difference calculations is the ease of implementation. However, each calculation requires n + 1 evaluations of the misfit function,
and so the forward viscoelastic loading problem must be solved n + 1 times. If the number of parameters is large, and if the computational
cost of solving the forward problem is even moderately high, such finite difference approximations cannot be practically useful.

To illustrate this point, let us suppose that the lateral viscosity structure of the earth model’s mantle is parametrized using spherical
harmonics up to degree L, and with nd radial basis functions. A simple calculation shows that this requires a total of

n = (L + 1)2nd , (1.7)

parameters to specify the viscosity structure. To use plausible numbers, we take as an example the shear velocity model S20RTS (Ritsema
et al. 1999), which has L = 20, nd = 21 and so would lead to a total of 9261 viscosity parameters. From the above discussion, we know that
calculating the finite difference derivatives of the misfit functional with respect to this viscosity parametrization would require 9262 solutions
of the forward problem. Furthermore, these derivatives would need to be calculated at each stage of the iterative scheme, and perhaps multiple
times per iteration depending on the algorithm used. In laterally heterogeneous earth models, however, the viscoelastic loading problem must
be solved using fully numerical methods (e.g. Zhong et al. 2003; Latychev et al. 2005), and each such calculation will require quite substantial
time (details depending, of course, upon available resources). Clearly, in such a case, determining gradients using finite differences is simply
not an option.

We note that a variant of the above finite difference approach is to calculate the directional derivatives 〈D Ĵ (m), mi 〉 exactly using
first-order perturbation theory. Although more accurate than finite difference approximations, this method still requires n solutions of the
perturbed forward problem to obtain the derivative with respect to an n-dimensional model parametrization, and so is subject to the same
computational limitations.

In order to apply gradient-based algorithms to such large-scale optimization problems, the only feasible way to calculate the required
derivatives is the adjoint method. As we will see below, with the adjoint method we can calculate the exact derivative D Ĵ (m) from one
solution of the forward problem, and one solution of the associated adjoint problem. Importantly, adjoint problems are closely related to the
linearization of the forward problem, and so are typically no harder to solve (e.g. Tröltzsch 2005). In fact, for the viscoelastic loading problem
considered in this paper, the adjoint problem is shown to be essentially identical in form to the forward problem, and so can be solved using
the same numerical method. Furthermore, when using the adjoint method we do not simply determine the components of the derivative along
the pre-defined basis vectors, but instead obtain the entire derivative D Ĵ (m) (in practice, of course, the viscoelastic loading problem will be
solved numerically using a suitable discretization, and the derivative obtained will be discretized accordingly). The derivative D Ĵ (m) can
then be trivially projected onto the basis vectors of any desired model parametrization, or alternatively, could be used directly to update the
model.

To clearly see the great practical advantage of the adjoint method, we return to our example based on an S20RTS-type parametrization for
mantle viscosity. We have seen that using finite differences it would take 9262 solutions of the forward problem to determine an approximate
derivative of the misfit. Using the adjoint method, however, this derivative could be obtained exactly at a cost equivalent to only two solutions
of the forward problem—an increase in efficiency by a factor of over 4600. For inverse problems involving computationally expensive forward
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Viscoelastic sensitivity kernels 37

calculations, such increases in efficiency are vital, and can make the difference between a problem being insurmountable or quite routine. To
conclude, we repeat that in the context of gradient-based optimization, adjoint methods are often the only viable way to compute the required
derivatives. In fact, finite difference schemes are equally efficient only in the uninteresting case of a single-model parameter. Importantly,
these conclusions are not dependent in any way on the particular method used to perform the forward calculations.

2 T H E F O RWA R D V I S C O E L A S T I C L OA D I N G P RO B L E M

2.1 Equations of motion

We begin by recalling the equations of motion for the quasi-static deformation of a non-rotating, self-gravitating, hydrostatically pre-stressed,
compressible and laterally heterogeneous earth model following Dahlen (1974), Dahlen & Tromp (1998) and Tromp & Mitrovica (1999a).
Let the earth model occupy a bounded open volume M ⊆ R

3 with smooth external boundary ∂M. Points in R
3 will be denoted by their

position vectors x relative to a fixed Cartesian coordinate system which, for definiteness, has its origin located at the centre of mass of M.
The components of all vector and tensor fields will also be specified relative to this coordinate system. We assume that the earth model is
further subdivided into a number of solid and fluid subregions that are separated by smooth, non-intersecting, closed surfaces called internal
boundaries. The union of the solid regions will be denoted MS and that of all fluid regions MF. We write � for the union of all internal and
external boundaries, with the internal boundaries being split into four subsets �SS, �SF, �FS and �FF, where here the first subscript denotes
whether the region on the inside of the boundary is solid (S) or fluid (F), while the second subscript specifies whether the region on the outside
of boundary is solid or fluid.

Prior to deformation we assume that the earth model is in hydrostatic equilibrium, this condition being expressed by the equation

∇ p + ρ∇	 = 0, (2.1)

for x ∈ M , where p denotes the equilibrium pressure, ρ is the density of the earth model and 	 is the gravitational potential. The pressure is
subject to the boundary condition

[p]+− = 0, (2.2)

for x ∈ �, where [·]+− denotes the jump in a quantity on crossing a boundary in the direction of the outward unit normal vector n̂, and it is
understood that p = 0 outside of M. The gravitational potential 	 is itself a solution of Poisson’s equation

(4πG)−1∇2	 = ρ, (2.3)

for x ∈ R
3, where G is the gravitational constant, subject to the boundary conditions

[	]+− = 0, [n̂ · ∇	]+− = 0, (2.4)

for x ∈ �, along with the condition that 	 → 0 as ‖x‖ → ∞. In a non-rotating hydrostatic earth model, it is well known (e.g. Dahlen &
Tromp 1998) that the level surfaces of ρ, p and 	 are concentric spheres. In particular, this condition requires that ρ, p and 	 are constants
on either side of internal and external boundaries, and that on such boundaries

∇	 = gn̂. (2.5)

This assumption of hydrostatic pre-stress cannot be strictly valid if the earth model possesses lateral variations in its density structure or
if there is a spherical topography on any internal or external boundaries. It is, nonetheless, expected that the departure from a hydrostatic
pre-stress field due to realistic lateral variations will be small, and we shall simply neglect additional terms in the equations of motion
associated with deviatoric pre-stress (e.g. Dahlen & Tromp 1998, section 3.11.1). The above discussion carries over essentially unchanged to
a rotating earth model, except in this case the level surfaces of the geopotential, density and pressure are ellipsoids determined through the
solution of Clairaut’s equation (e.g. Dahlen & Tromp 1998, section 14.1.1).

We now consider the response of such an earth model to a time-dependent surface load σ (x, t). The resulting deformation is described
by the displacement field u(x, t) and perturbed gravitational potential φ(x, t); for convenience, in what follows, we shall refer to the pair
{u, φ} as being the ‘deformation field’ of the earth model. As shown by Dahlen (1974), the displacement field u is only well defined in solid
portions of the earth model, while in fluid regions the deformation can be completely characterized by the perturbed gravitational potential.
Prior to the onset of loading at time t = t0, we assume that the earth model is at rest, which gives the initial conditions

u(x, t0) = 0, φ(x, t0) = 0, (2.6)

for all x ∈ MS and x ∈ R
3, respectively. The subsequent evolution of u and φ is governed by the quasi-static momentum equation (e.g. Dahlen

1974; Tromp & Mitrovica 1999)

− ∇ · T + ∇(ρu · ∇	) − ∇ · (ρu)∇	 + ρ∇φ = 0, (2.7)
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38 D. Al-Attar and J. Tromp

for x in the solid earth MS, where T denotes the incremental Lagrangian–Cauchy stress tensor, and the ‘hydrostatic Poisson equation’

(4πG)−1∇2φ =

⎧⎪⎪⎨
⎪⎪⎩

−∇ · (ρu) x ∈ MS

g−1φ∂nρ x ∈ MF

0 x ∈ R
3 \ Mcl

, (2.8)

where ∂n is the directional derivative along the outward normal to level surfaces of ρ, and Mcl denotes the closure of M. Here, we have made
use of the identities

p1 = −ρφ, ρ1 = g−1φ∂nρ, x ∈ MF, (2.9)

due to Dahlen (1974) and Crossley & Gubbins (1975), which follow from the hydrostatic condition in fluid regions and the assumption that
the mass of the core remains constant during deformation. The boundary conditions for the problem are

n̂ · T = −σ∇	, x ∈ ∂ M, (2.10)

[n̂ · T]+− = 0, x ∈ �SS, (2.11)

n̂ · T+ = ρ−[u+ · ∇	 + φ]n̂, x ∈ �FS, (2.12)

n̂ · T− = ρ+[u− · ∇	 + φ]n̂, x ∈ �SF, (2.13)

[u]+− = 0, x ∈ �SS, (2.14)

[φ]+− = 0, x ∈ �, (2.15)

[
(4πG)−1n̂ · ∇φ

]+
− − ρ−n̂ · u− = σ, x ∈ ∂ M, (2.16)

[
(4πG)−1n̂ · ∇φ + ρn̂ · u

]+
− = 0, x ∈ �SS, (2.17)

[
(4πG)−1n̂ · ∇φ

]+
− + [ρ]+− n̂ · u+ = 0, x ∈ �FS, (2.18)

[
(4πG)−1n̂ · ∇φ

]+
− + [ρ]+− n̂ · u− = 0, x ∈ �SF, (2.19)

where a superscript ± denotes whether a term is evaluated on the upper (+) or lower (−) side of a discontinuity, and we have the decay
condition at infinity

lim
‖x‖→∞

φ = 0. (2.20)

2.2 Linear viscoelasticity with internal variables

2.2.1 Hooke’s Law and Boltzmann’s superposition principle

To complete the specification of the loading problem, we require a constitutive equation which relates the stress tensor to the deformation. It
will be useful to first recall the case of an isotropic linear elastic solid for which this relationship is given by

T(t) = κ∇ · u(t) I + 2μd(t), (2.21)

where for clarity we have suppressed the spatial dependence of the various terms. In this equation, κ and μ are, respectively, the bulk and
shear moduli, I is the identity tensor and

d = e − 1

3
tr(e)I, (2.22)
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Viscoelastic sensitivity kernels 39

is the deviatoric part of the linearized strain tensor

e = 1

2

[∇u + (∇u)T
]
, (2.23)

where the superscript T denotes the transpose of a second-order tensor.
The constitutive relation for a linear viscoelastic material generalizes eq. (2.21) to include a causal dependence on past deformation, and

can be written in the form of Boltzmann’s superposition principle

T(t) = κ∇ · u(t)I +
∫ t

−∞
2μ(t − t ′) ḋ(t ′) dt ′, (2.24)

where μ is the time-dependent ‘shear relaxation function’ for the material, and ḋ is the time-derivative of d. In writing eq. (2.24), we have again
restricted attention to isotropic materials, and have, furthermore, neglected bulk viscoelasticity, these simplification being usually thought
sufficient for GIA modelling (e.g. Wu & Peltier 1982; Latychev et al. 2005). Note that we are assuming a finite value for the bulk modulus,
and so take into account the compressibility of the solid earth. Integrating by parts, we alternatively obtain

T(t) = κ∇ · u(t)I + 2μ0d(t) +
∫ t

−∞
2μ̇(t − t ′) d(t ′) dt ′, (2.25)

where μ0 = μ(0) is known as the ‘unrelaxed shear modulus’ of the material. Written in this form, the first two terms on the right-hand side
can be identified with the instantaneous elastic response of the material, while the final term is associated with viscoelastic relaxation.

2.2.2 Maxwell solid rheologies

In modelling GIA, the most commonly used shear relaxation function is a Maxwell solid for which

μ(t) = μ0e− t
τ , (2.26)

where μ0 > 0 is the unrelaxed shear modulus, and τ > 0 the ‘Maxwell relaxation time’ (e.g. Wu & Peltier 1982; Latychev et al. 2005). It
is well known that for deformations occurring rapidly relative to τ , a Maxwell solid responds like an isotropic elastic solid with bulk and
shear moduli given by κ and μ0, respectively. Conversely, for deformations slow relative to τ , a Maxwell solid responds like a compressible
Newtonian fluid with viscosity

η = μ0τ. (2.27)

Substituting eq. (2.26) into eq. (2.25), we obtain

T(t) = κ∇ · u(t)I + 2μ0d(t) − 2μ0

τ

∫ t

t0

e− (t−t ′ )
τ d(t ′) dt ′, (2.28)

where we have made use of the initial conditions to fix the lower limit of integration in the final term. We now define the ‘internal variable’

m(t) = 1

τ

∫ t

t0

e− (t−t ′)
τ d(t ′) dt ′, (2.29)

so that we can rewrite eq. (2.28) as

T = κ∇ · uI + 2μ0(d − m). (2.30)

As d is a trace-free tensor, the same is true of m, and the deviatoric stress τ in the material can be written

τ = 2μ0(d − m). (2.31)

Differentiating eq. (2.29) with respect to time we see that m is a solution of the differential equation

ṁ + 1

τ
(m − d) = 0, (2.32)

subject to the initial conditions

m(t0) = 0. (2.33)

Taken together, eqs (2.30) and (2.32) are completely equivalent to eq. (2.28) but do not display an explicit dependence on the past deformation
of the earth model. We note that this internal variable method can be extended in a simple manner to more complex linear and non-linear
viscoelastic rheologies (e.g. Simo & Hughes 1998). Although such extensions in the GIA problem have been considered previously (e.g. Wu
et al. 2010; Steffen et al. 2012) and may be relevant, we will not discuss them further.
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2.3 Rate formulation of the viscoelastic loading problem

In Sections 2.1 and 2.2, we described a complete formulation of the viscoelastic loading problem in a Maxwell earth model. Our approach is
equivalent to earlier time-domain studies (e.g. Hanyk et al. 1995; Zhong et al. 2003; Latychev et al. 2005), though it differs slightly due to the
explicit introduction of internal variables. Following the method of Hanyk et al. (1995), numerical solutions of the problem could be obtained
through the explicit introduction of an Euler time-stepping scheme. Moreover, the derivation of the adjoint loading problem in Section 3.2
could also be carried out using the above formulation of the problem as a starting point.

In this subsection, however, we describe an alternative ‘rate formulation’ of the viscoelastic loading problem that forms the basis for our
numerical calculations and also for the derivation of the adjoint viscoelastic loading problem. Within the context of this paper, the advantages
of this rate formulation are somewhat marginal, with the most important being (i) greater flexibility in the choice of time-stepping algorithm,
and (ii) the ability to determine rates of change of the deformation fields directly without recourse to numerical differentiation. The true utility
of this rate formulation will, however, only become apparent in a later paper where we consider the incorporation of gravitationally consistent
sea level changes. Although a full description of this approach is beyond our present scope, it will be useful to discuss some complications
associated with the incorporation of sea level changes into the GIA problem, and so motivate our formulation of the problem in terms of rates
of change.

When considering loading due to both ice sheets and the ocean, the surface load σ is a sum of two terms

σ = ρi I + ρw S, (2.34)

with ρ i the density of ice, I the ice thickness, ρw the density of water and S the ocean height (e.g. Farrell & Clark 1976; Mitrovica & Milne
2003). In the forward GIA problem the ice thickness is given, but the evolution of the ocean height must be determined from the requirement
that it is an equipotential surface of the gravitational potential and that the total H2O mass is conserved between the oceans and ice sheets. If
it is assumed that the geometry of the ocean basins does not vary with time, then these conditions lead to a simple linear relationship between
variations in ocean height and the deformation fields u and φ (e.g. Farrel & Clark 1976). Variations in ocean basin geometry do, however,
constitute an important feature of the GIA problem, and their inclusion leads to a complex non-linear relationship between ocean height and
the deformation fields that cannot be solved explicitly. At present, the effects of shoreline migration is incorporated into the GIA modelling
through iterative numerical schemes (e.g. Mitrovica & Milne 2003). While effective for forward calculations, such iterative schemes are not
well suited to the development of adjoint methods, and it is desirable to have a non-iterative formulation of the GIA problem that incorporates
changes in ocean basin geometry. In future work, we will present such a formulation of the GIA problem based upon the rate formulation of
the viscoelastic loading problem described below. The key step in developing this approach is the observation that it is not the load σ itself
but its time-derivative σ̇ that occurs in the rate formulation of the problem. From eq. (2.34), we have

σ̇ = ρi İ + ρw Ṡ, (2.35)

and so see that in this case we instead require an equation relating the rate of change of the ocean height Ṡ to the deformation fields u and φ.
It may be shown that such a relation can be obtained in closed form even when ocean basin geometry is allowed to vary with time. Moreover,
this equation is linear in the time derivatives u̇ and φ̇ of the deformation fields, with the non-linearity of the problem being expressed
solely through a dependence on the instantaneous configuration of the ocean basins. Combining this result with the rate formulation of the
viscoelastic loading problem, we obtain a fully explicit-coupled system of quasi-linear evolution equations, which incorporate variations in
the geometry of ocean basins. These evolution equations are, furthermore, in a form suitable for the application of adjoint methods, and the
results of Section 3 of this paper can be extended to the full GIA problem in a relatively simple manner.

2.3.1 Strong form of the loading problem

To obtain the rate formulation of the viscoelastic loading problem, we first differentiate eq. (2.30) with respect to time and make use of eq.
(2.32) to obtain the identity

Ṫ = κ∇ · u̇ I + 2μ0ḋ + 2μ0

τ
(m − d). (2.36)

If we then differentiate eq. (2.7) with respect to time and substitute in eq. (2.36), we arrive at

−∇ · (κ∇ · u̇ I + 2μ0ḋ
)+ ∇(ρu̇ · ∇	) − ∇ · (ρu̇)∇	 + ρ∇φ̇ − ∇ ·

[
2μ0

τ
(m − d)

]
= 0, (2.37)

while differentiating eq. (2.8) we find

(4πG)−1∇2φ̇ =

⎧⎪⎪⎨
⎪⎪⎩

−∇ · (ρu̇) x ∈ MS

g−1φ̇∂nρ x ∈ MF

0 x ∈ R
3 \ Mcl

, (2.38)
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and proceeding similarly with the boundary conditions we obtain

n̂ · (κ∇ · u̇ I + 2μ0ḋ
)+ 2μ0

τ
n̂ · (m − d) = −σ̇∇	, x ∈ ∂ M, (2.39)

[
n̂ · (κ∇ · u̇ I + 2μ0ḋ

)+ 2μ0

τ
n̂ · (m − d)

]+

−
= 0, x ∈ �SS, (2.40)

n̂ · (κ+∇ · u̇+ I + 2μ+
0 ḋ+)+ 2μ+

0

τ+ n̂ · (m+ − d+) = ρ−[u̇+ · ∇	 + φ̇]n̂, x ∈ �FS, (2.41)

n̂ · (κ−∇ · u̇− I + 2μ−
0 ḋ−)+ 2μ−

0

τ− n̂ · (m− − d−) = ρ+[u̇− · ∇	 + φ̇]n̂, x ∈ �SF, (2.42)

[u̇]+− = 0, x ∈ �SS, (2.43)

[
φ̇
]+
− = 0, x ∈ �, (2.44)

[
(4πG)−1n̂ · ∇φ̇

]+
− − ρ−n̂ · u̇− = σ̇ , x ∈ ∂ M, (2.45)

[
(4πG)−1n̂ · ∇φ̇ + ρn̂ · u̇

]+
− = 0, x ∈ �SS, (2.46)

[
(4πG)−1n̂ · ∇φ̇

]+
− + [ρ]+− n̂ · u̇+ = 0, x ∈ �FS, (2.47)

[
(4πG)−1n̂ · ∇φ̇

]+
− + [ρ]+− n̂ · u̇− = 0, x ∈ �SF, (2.48)

along with the condition that φ̇ → 0 as ‖x‖ → ∞. Taken together, eqs (2.37) through to (2.48) constitute a linear boundary value problem
whose solution gives the instantaneous values of u̇ and φ̇ from knowledge of the current values of these fields along with those of the internal
variable m and the time derivative of the applied surface load σ̇ . Moreover, this boundary value problem takes precisely the same form as
a linear elastostatic loading problem but for the occurrence of additional body and surface forces associated with viscoelastic relaxation.
Finally, combining this boundary value problem with eq. (2.32), we obtain the desired coupled system of evolution equations for the variables
u, φ and m. The above derivation can also be extended to the case where the load σ possesses a finite number of discontinuities, and the
necessary jump conditions can be found in Appendix A.

2.3.2 Weak form of the loading problem

The time-domain loading problem described above is said to be in the ‘strong form’ due to the equations being defined pointwise in space and
in time. We now consider an alternative ‘weak form’ of the problem which involves global integrals over the spatial domain. This formulation
provides the basis for the numerical solution of the loading problem using finite-element-like methods, and also plays a central role in the
derivation of the adjoint loading problem below.

To describe the weak form of the viscoelastic loading problem, we introduce suitably regular time-independent test functions u′, φ′ and
m′, the first and third of which are defined in MS, while the second is defined in R

3. We also require that u′ and φ′ satisfies the kinematic
boundary conditions[

u′]+
− = 0, x ∈ �SS, (2.49)

[
φ′]+

− = 0, x ∈ �, (2.50)

and that φ′ → 0 as ‖x‖ → ∞. We then say that u, φ and m are solutions of the weak form of the viscoelastic loading problem if

A(u̇, φ̇ | u′, φ′) −
∫

MS

2μ0

[
ṁ : m′ + 1

τ
(d − m) : (d′ − m′)

]
dV +

∫
∂ M

(∇	 · u′ + φ′)σ̇ dS = 0, (2.51)
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holds for all test functions u′, φ′ and m′, where d′ is the deviatoric strain tensor associated with u′, the notation ‘:’ denotes the contraction of
second-order tensors, and we have defined the bilinear form

A(u, φ | u′, φ′) =
∫

MS

κ∇ · u ∇ · u′ dV +
∫

MS

2μd : d′ dV + 1

2

∫
MS

ρ
[∇(u · ∇	) · u′ + ∇(u′ · ∇	) · u

]
dV

−1

2

∫
MS

ρ
(∇ · u∇	 · u′ + ∇ · u′∇	 · u

)
dV +

∫
MS

ρ(∇φ · u′ + u · ∇φ′) dV + 1

4πG

∫
R3

∇φ · ∇φ′ dV

+
∫

MF

g−1φφ′∂nρ dV +
∫

�FS

ρ−gn̂ · u n̂ · u′ dS −
∫

�SF

ρ+gn̂ · u n̂ · u′ dS +
∫

�FS

ρ−(φu′ + uφ′) · n̂ dS

−
∫

�SF

ρ+(φu′ + uφ′) · n̂ dS, (2.52)

which is symmetric in the sense that

A(u, φ | u′, φ′) = A(u′, φ′ | u, φ). (2.53)

Given that u, φ and m are solutions of the strong form of the loading problem, it may be shown that eq. (2.51) holds for arbitrary test functions
through a lengthy but simple argument whose details can be found in Appendix B. Conversely, if u, φ and m are solutions of the weak form
of the loading problem, then this argument can be reversed to show that they also satisfy the strong form of the loading problem.

In the weak form of the viscoelastic loading problem given in eqs (2.51) and (B39), the time evolution of the fields u, φ and m is defined
pointwise. This approach is well suited to numerical solution using finite-element-like methods coupled to a suitable time-stepping algorithm.
In developing the adjoint method, it will be useful to obtain an alternative ‘time-integrated weak form’ of the viscoelastic loading problem in
which the time evolution of the system is also expressed in a variational manner. Having done so, we can then take the time-integrated weak
form as the sole constraint when defining an appropriate Lagrangian functional in Section 3.2, and need not explicitly incorporate the initial
or jump conditions into the PDE-constrained optimization problem (PDE is an abbreviation of partial differential equation). To obtain this
result, we let [t0, t1] be the time interval of interest, and suppose that the test functions u′, φ′ and m′ are time dependent, that they satisfy the
terminal conditions

u′(t1) = 0, φ′(t1) = 0, m′(t1) = 0, (2.54)

and are continuous at all times when σ undergoes a jump discontinuity. Integrating eq. (2.51) with respect to time we find∫ t1

t0

{
A(u̇, φ̇ | u′, φ′) −

∫
MS

2μ0

[
ṁ : m′ + 1

τ
(d − m) : (d′ − m′)

]
dV +

∫
∂ M

(∇	 · u′ + φ′)σ̇ dS

}
dt = 0, (2.55)

and using integration by parts obtain∫ t1

t0

{
−A(u, φ | u̇′, φ̇′) −

∫
MS

2μ0

[
−m : ṁ′ + 1

τ
(d − m) : (d′ − m′)

]
dV −

∫
∂ M

(∇	 · u̇′ + φ̇′)σ dS

}
dt = 0, (2.56)

where we have made use of the continuity and terminal conditions on the test functions and have employed the jump condition in eq. (B39).
This argument shows that if u, φ and m are solutions of the viscoelastic loading problem, then eq. (2.56) holds for any such test functions.
Conversely, if eq. (2.56) holds for all suitable test functions we can reverse the above argument to conclude that u, φ and m satisfy the
evolution equation given in eq. (2.51), the jump conditions in eq. (B39) and the initial conditions for the problem.

3 T H E I N V E R S E V I S C O E L A S T I C L OA D I N G P RO B L E M

We now turn attention to the ‘inverse viscoelastic loading problem’, where we recall that by this we mean the simplified version of the
inverse GIA problem in which the effects of gravitationally self-consistent ocean loading and rotational feedbacks have been neglected. In this
problem, the data comprise observations of the deformation of a viscoelastic earth model due to surface loading, and from these observations
we wish to make inferences about both the load σ and the mantle viscosity η. In this problem the observations do, of course, also depend on
the geometry and elastic structure of the earth model, but we shall suppose that these parameters are known. In particular, we assume that the
earth model has an elastic lithosphere of a known, but potentially laterally variable, thickness. Extension of the adjoint method to include the
lithospheric thickness as an additional model parameter is possible, but has yet to be carried out.

For a set of model parameters {σ , η}, we can solve the viscoelastic loading problem to determine synthetic deformation fields u and
φ, and so compare the predictions of the model with observations. Typically, the agreement between the observed and synthetic deformation
fields is quantified in terms a misfit functional, which may also incorporate some form of model regularization. In this manner, we can reduce
the inverse problem to finding the model which minimizes the misfit functional. Such optimization problems can be practically solved using
gradient-based algorithms (Nocedal & Wright 2006; Tape et al. 2007), and our aim in this section will be the efficient calculation of the
gradients required by such methods.
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3.1 An example objective functional

To motivate the development of the adjoint method, we now consider an idealized, but realistic, example of the inverse viscoelastic loading
problem. Let xi ∈ ∂ M for i = 1, . . . , Nr be a set of surface locations at which we have measured vertical displacements dij at the times tij for
j = 1, . . . , N i

t . Excepting recent global positioning system (GPS)-derived uplift measurements (e.g. Milne et al. 2001), such observations
cannot be readily made in practice. However, within our simplified viscoelastic loading problem, these displacement measurements should be
regarded as analogs for those of past sea level (e.g. Peltier 2004). Any such data set will, of course, be subject to errors in both the recorded
displacements and times. For simplicity, we suppose that the errors are uncorrelated, zero-mean, Gaussian random errors, such that tij and dij

have variances given by �t2
i j and �d2

i j , respectively.
For given values of {σ , η}, we write u for the corresponding synthetic displacement field, and quantify the misfit between the given data

and our model predictions through the conventional least-squares misfit

J = 1

2Nr

Nr∑
i=1

1

N i
t

Ni
t∑

j=1

{
1

�d2
i j

[n̂ · u(xi , t ′
i j ) − di j ]

2 + 1

�t2
i j

(t ′
i j − ti j )

2

}
, (3.1)

where t ′
i j are ‘model times’ that have been introduced into the problem to account for the presence of timing errors in the data. In the interest

of generality, we shall refer to J as the ‘objective functional’ for the problem, and regard it as a function of the surface values of u and φ.
As the synthetic deformation fields u and φ depend on the model parameters {σ , η}, the same is implicitly true of J, and we can define a
‘reduced objective functional’ through the relation

Ĵ (σ, η) = J (u, φ), (3.2)

where it is understood that u and φ are the deformation fields obtained by solving the viscoelastic loading problem corresponding to the given
model parameters. In practice, the objective functional may also display an explicit dependence on {σ , η} due to model regularization. We
need not, however, consider further any explicit dependence of Ĵ on the model parameters, as the resulting contributions to the derivatives
can be directly calculated.

Given perturbations to {σ , η}, our aim is to write the resulting first-order perturbation to Ĵ in the form

δ Ĵ =
∫

MS

Kηδ ln η dV +
∫ t1

t0

∫
∂ M

Kσ δσ dS dt, (3.3)

where Kη is ‘viscosity sensitivity kernel’ that is defined for x ∈ MS, while Kσ is the ‘load sensitivity kernel’, which is defined on
∂M × [t0, t1], with [t0, t1] an appropriate time interval, and where we have, for convenience, normalized the perturbation δ ln η = δη/η

to the viscosity by its references value. In fact, we will actually find it preferable to use σ̇ and not σ as the loading parameter, and so will also
obtain the alternate expression

δ Ĵ =
∫

MS

Kηδ ln η dV +
∫ t1

t0

∫
∂ M

K σ̇ δσ̇ dS dt, (3.4)

where K σ̇ is the ‘rate-of-load sensitivity kernel’, which is defined on ∂M × [t0, t1].
The viscosity kernel introduced in eq. (3.3) expresses the linearized sensitivity of Ĵ to a laterally heterogeneous viscosity perturbation

δ ln η defined with respect to a laterally heterogeneous reference model. It is, however, of some interest to restrict attention to spherically
symmetric viscosity perturbations defined with respect to a spherically symmetric background models. In this case, we can define a ‘radial
viscosity kernel’ K η through the relation∫

IS

K ηδ ln η dr =
∫

MS

Kηδ ln η dV, (3.5)

where IS denotes the subset of radii r in the earth model lying in solid regions, and it is understood that here η and δη are spherically symmetric.
It follows that K η is given by

K η =
∫

�

Kηr 2 dS, (3.6)

where � denotes the unit two-sphere.

3.2 The adjoint viscoelastic loading problem

We wish to determine the derivative of the reduced objective functional Ĵ defined in eq. (3.2) with respect to the model parameters {σ , η}. As,
however, Ĵ only depends on the model parameters implicitly, its derivatives are most efficiently calculated using the method of PDE-constrained
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optimization (e.g. Tromp et al. 2005; Tröltzsch 2005, Liu & Tromp 2008). To do so, we introduce the Lagrangian functional

L = J −
∫ t1

t0

{
A(u, φ | u̇′, φ̇′) +

∫
MS

2μ0

[
−m : ṁ′ + 1

τ
(d − m) : (d′ − m′)

]
dV +

∫
∂ M

(∇	 · u̇′ + φ̇′)σ dS

}
dt, (3.7)

where the first term on the right-hand side is the objective functional of interest, and the second term is the time-integrated weak form of the
viscoelastic loading problem given in eq. (2.56). Here, the test functions u′, φ′ and m′ act as Lagrange multiplier fields associated with the
constraint that u, φ and m are solutions of the viscoelastic loading problem. Note that, for consistency, in what follows we shall persist in
referring to u′, φ′ and m′ as test functions.

This Lagrangian could have equivalently been obtained by starting from the strong form of the viscoelastic loading problem given in
Section 2.3 and adding to J each of the equations of motion and boundary conditions as constraints using appropriate Lagrange multiplier
fields. After substantial manipulation of the resulting expression, this Lagrangian would then reduce to the form given above. Although this
alternative approach is, perhaps, more clearly motivated, we have preferred to first obtain the weak form of the viscoelastic loading problem
as this result is both useful in numerical applications, and leads to a simple derivation of the adjoint loading problem.

Following the method of Lagrange multipliers, the first-order perturbation δ Ĵ to the reduced objective functional with respect to variations
in {σ , η} can be determined by calculating the corresponding first-order perturbation δL to the Lagrangian functional subject to the condition
that L is stationary with respect to variations in both the forward fields u, φ and m and the test functions u′, φ′ and m′ (e.g. Tröltzsch 2005).
That L be stationary with respect to variations in the test functions simply implies that u, φ and m are solutions of the viscoelastic loading
problem. From the condition that L be stationary with respect to variations in u, φ and m, we obtain∫ t1

t0

{
−A(δu, δφ | u̇′, φ̇′) −

∫
MS

2μ0

[
−δm : ṁ′ + 1

τ
(δd − δm) : (d′ − m′)

]
dV +

∫
∂ M

(
ḣ · δu + ḣδφ

)
dS

}
dt = 0, (3.8)

for all δu, δφ and δm. Here, for both convenience and generality we have written the first-order perturbation to J with respect to u and φ in
the form

δ J =
∫ t1

t0

∫
∂ M

(
ḣ · δu + ḣδφ

)
dS dt, (3.9)

where ḣ is the Fréchet kernel of J with respect to u, and ḣ is the Fréchet kernel of J with respect to φ. Equivalently, this implies that for all
time-independent δu, δφ and δm, we have

− A(δu, δφ | u̇′, φ̇′) −
∫

MS

2μ0

[
−δm : ṁ′ + 1

τ
(δd − δm) : (d′ − m′)

]
dV +

∫
∂ M

(
ḣ · δu + ḣδφ

)
dS = 0. (3.10)

The Fréchet kernels ḣ and ḣ introduced above have been written as time derivatives to simplify the resulting form of the adjoint problem.
This does, however, lead to an ambiguity in their definition up to the addition of a constant in time, which we remove by requiring that
h = 0, h = 0 for t ≥ t1. For the particular objective functional given in eq. (3.1), we readily find

h(x, t) = − 1

Nr

Nr∑
i=1

1

N i
t

Ni
t∑

j=1

1

�d2
i j

[n̂ · u(xi , t ′
i j ) − di j ]δ(x − xi )H (t ′

i j − t)n̂, (3.11)

h(x, t) = 0, (3.12)

where δ(x) is the Dirac delta function on ∂M, H(t) the Heaviside step function, we have recalled the identity

Ḣ (t ′ − t) = −δ(t − t ′) (3.13)

and the time dependence of h has been fixed using the convention described above.
At this point, it will be useful to define ‘adjoint fields’ through

u†(t) = u′(t1 − t + t0), (3.14)

φ†(t) = φ′(t1 − t + t0), (3.15)

m†(t) = m′(t1 − t + t0), (3.16)

and, similarly, the ‘adjoint loads’

h†(t) = h(t1 − t + t0), (3.17)

h†(t) = h(t1 − t + t0). (3.18)

We see, in particular, that the terminal conditions given in eq. (2.54) for the time-dependent test functions are transformed into initial
conditions

u†(t0) = 0, φ†(t0) = 0, m†(t0) = 0, (3.19)
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for the adjoint fields. If we replace the test functions in eq. (3.10) by the corresponding adjoint variables, we then obtain

A(u̇†, φ̇† | δu, δφ) −
∫

MS

2μ0

[
ṁ† : δm + 1

τ
(d† − m†) : (δd − δm)

]
dV −

∫
∂ M

(
ḣ† · δu + ḣ†δφ

)
dS = 0, (3.20)

which is to hold for all δu, δφ and δm, and where we have made use of the symmetry of A given in eq. (2.53). We shall say that eq. (3.20) is
the weak form of the ‘adjoint viscoelastic loading problem’, and require that the adjoint fields satisfy this equation. This adjoint viscoelastic
loading problem is of precisely the same form as the viscoelastic loading problem given in eq. (2.51), with the only difference being in the
force terms. Consequently, the same numerical method can be used for the solution of both the forward and adjoint viscoelastic loading
problems.

With the test functions u′, φ′ and m′, determined through the solution of the adjoint viscoelastic loading problem, we can equate the
first-order perturbation to the reduced objective functional Ĵ with that of L and so obtain

δ Ĵ =
∫ t1

t0

∫
MS

2μ0

τ
[d(t) − m(t)] : [d†(t1 − t + t0) − m†(t1 − t + t0)]

δη

η
dV dt

−
∫ t1

t0

∫
∂ M

[∇	 · u̇†(t1 − t + t0) + φ̇†(t1 − t + t0)
]
δσ (t) dS dt, (3.21)

where for clarity we have explicitly included time arguments. From this expression we can identify the desired sensitivity kernels as being

Kη =
∫ t1

t0

1

2η
τ (t) : τ †(t1 − t + t0) dt, (3.22)

Kσ (t) = −∇	 · u̇†(t1 − t + t0) − φ̇†(t1 − t + t0), (3.23)

where we have recalled the expression in eq. (2.31) for the deviatoric stress.
The adjoint viscoelastic loading problem given in weak form in eq. (3.20) along with the sensitivity kernels in eqs (3.22) and (3.23) are

the main results of this paper. These sensitivity kernels represent the derivative of the reduced objective functional, and could be used in a
gradient-based optimization algorithm to iteratively update the model parameters {σ , η} so as to better fit the given rebound curves in our
example inverse problem. To calculate these sensitivity kernels, we must:

(1) Solve the forward viscoelastic loading problem once to obtain u, φ and τ .
(2) Calculate the adjoint loads h† and h† from u and φ using eq. (3.11).
(3) Solve the adjoint viscoelastic loading problem once to obtain u†, φ† and τ †.
(4) Calculate the sensitivity kernels using eqs (3.22) and (3.23).

In this process, we note that the objective functional enters the problem only through the adjoint loads h† and h†. It follows that given any
objective functional J, we can similarly calculate the associated sensitivity kernels, and to do so we need only determine the appropriate form
of the adjoint loads. In Appendix C, we illustrate the versatility of the adjoint method by describing a number of other possible objective
functionals. In particular, we note that such objective functionals need not represent a misfit between data and synthetic predictions. Rather, the
objective functional can simply represent some property of the deformation fields of interest, and the sensitivity kernels show, in a linearized
manner, how this property depends on both the load and viscosity.

During the implementation of the adjoint method, only one solution of the forward viscoelastic loading problem is required, and then
one further solution of the adjoint viscoelastic loading problem. It is this property that gives the adjoint method such great computational
efficiency. Moreover, we saw above that the adjoint viscoelastic loading problem is actually the same as the forward problem except for the
force term. This means that a code for solving the forward viscoelastic loading problem can with only very minor modification be used to
solve the adjoint problem as well. Finally, it is noteworthy that the expression for the viscosity sensitivity kernel given in eq. (3.22) does
not depend upon the internal variable formulation of viscoelasticity used in this paper. This means that any code capable of determining the
deviatoric stresses associated with the forward viscoelastic loading problem could be used to calculate viscosity kernels. In particular, this
should be the case with existing fully numerical codes for solving the viscoelastic loading problem in laterally heterogeneous earth models
(e.g. Zhong et al. 2003; Latychev et al. 2005).

3.3 Rate-of-loading kernel

If the adjoint loads undergo a finite jump discontinuity, then the same is true of the adjoint deformation fields u†, and φ†, and the size of this
jump can be obtained through solution of the static loading problem give in eq. (B40). Such jumps in the adjoint load occur, in particular,
whenever the objective functional depends upon the point value of the deformation fields at a given time. For example, we see that the adjoint
load h† corresponding to eq. (3.11) is discontinuous at each of the times t1 − tij − t0 for i = 1, . . . , Nr and j = 1, . . . , N i

t . In eq. (3.23), it is
the time derivative of the adjoint deformation fields that occur in the expression for the load kernel, and so we see that for each discontinuity
in the adjoint loads at a time t′ there corresponds a delta-function-like singularity in Kσ at the reversed time t1 − t′ − t0. In such cases, the
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derivative of Ĵ with respect to σ cannot be identified with a possible load, and gradient-based methods, such as the steepest descent algorithm,
are inapplicable.

This problem can be circumvented through a method for ‘quelling’ singular kernels described by Backus (1970). To do so, we regard σ̇

and not σ as the relevant model parameter, and using integration by parts obtain

−
∫ t1

t0

∫
∂ M

[∇	 · u̇†(t1 − t + t0) + φ̇†(t1 − t + t0)
]
δσ (t) dS dt =

∫ t1

t0

∫
∂ M

[∇	 · u†(t1 − t + t0) + φ†(t1 − t + t0)
]
δσ̇ (t) dS dt, (3.24)

where we have used the initial conditions on the adjoint deformation fields and the load perturbation. Substituting this result into eq. (3.21),
we can then identify the rate-of-loading sensitivity kernel as

K σ̇ (t) = ∇	 · u†(t1 − t + t0) + φ†(t1 − t + t0). (3.25)

In the case that the adjoint loads are discontinuous at a time t′, we now see that the rate-of-loading kernel is non-singular, though discontinuous,
at the reversed time t1 − t′ − t0. Because of this property, K σ̇ is suitable for use with methods like the steepest descent algorithm, and we take
σ̇ as our preferred loading parameter. Moreover, when adding an update to σ̇ that is discontinuous in time, the corresponding update to σ is,
of course, continuous in time, and it is only such loads that are physically acceptable.

4 A P P L I C AT I O N T O S P H E R I C A L LY S Y M M E T R I C E A RT H M O D E L S

To illustrate potential applications of the adjoint method, we now present some calculations performed in a spherically symmetric earth model
possessing a solid elastic inner core, an inviscid fluid outer core, a viscoelastic mantle with Maxwell solid rheology, and an elastic lithosphere.
Details of the numerical methods can be found in Appendix D, and here we simply outline the computational steps in calculating both the
rate-of-loading and viscosity kernels. In these examples we have considered spherically symmetric earth models to simplify the numerical
calculations, but this is in no way a limitation of the theory. Similarly, we note that, though all spherical harmonic expansions occurring below
are truncated at degree 80, this was an arbitrary choice, and calculations including higher harmonic degrees can, and have, been performed.
For a number of the examples, we refer the reader to Appendix C where discussion of the various objective functionals J can be found.

The earth model’s elastic structure has been taken to be isotropic preliminary reference earth model (PREM) of Dziewonski & Anderson
(1981) with the ocean replaced by crustal material. In order to assess the effects of the background viscosity structure on the sensitivity
kernels, we have considered three viscosity models of increasing complexity shown in Fig. 1. The third and most complex of these models is
a modified version of VM2 of Peltier (2004) in which the piecewise constant viscosity structure has been smoothed using a two-point running
average, except the major discontinuity at 670 km depth has been retained. We use this smoothed model to emphasize that such time-domain

Figure 1. Radial viscosity profiles of mantle viscosity for the three earth models used in the range 3480–6251 km. In each case, the elastic structure of the
model is that of isotropic PREM (Dziewonski & Anderson 1981) and there is a 120-km thick elastic lithosphere.
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Viscoelastic sensitivity kernels 47

Figure 2. The rate-of-loading kernel calculated in viscosity model 2 corresponding to a point measurement of vertical displacement plotted as a function of
angular distance from the observation point. Each line on the plot shows the rate-of-loading kernel at a value of t − t′ in the range −50 to 0 kyr in 1 kyr intervals.
The line for −50 kyr is plotted in darkest blue and intersects the y-axis at the lowest point, while the line for 0 kyr is plotted in darkest red and intersects the
y-axis at the highest point. The colours of the lines corresponding to intermediate times grade smoothly between those of the endpoints.

Figure 3. The rate-of-loading kernel corresponding to a point measurement of geoid anomaly plotted as a function of angular distance from the observation
point. Each line on the plot shows the rate-of-loading kernel at a value of t − t′ in the range −50 to 0 kyr in 1 kyr intervals. The line for −50 kyr is plotted
in darkest blue and intersects the y-axis at the lowest point, while the line for 0 kyr is plotted in darkest red and intersects the y-axis at the highest point. The
colours of the lines corresponding to intermediate times grade smoothly between those of the endpoints.

methods can be applied with continuously varying radial viscosities. This situation is in contrast with the ‘viscoelastic normal mode method’
that can only be rigorously applied in piecewise constant viscosity structures (e.g. Fang & Hager 1995; Han & Wahr 1995; Al-Attar 2011).

4.1 Rate-of-loading sensitivity kernels

4.1.1 Computational details

The rate-of-loading kernel K σ̇ corresponding to a given objective functional J may be calculated in the following manner:

(1) Solve the forward viscoelastic loading problem to determine the deformation fields u and φ.
(2) From u and φ calculate the adjoint loads h† and h† associated with J through eqs (3.9), (3.17) and (3.18).
(3) Using these adjoint loads, solve the adjoint viscoelastic loading problem to obtain the adjoint deformation fields u† and φ†.
(4) Compute the rate-of-loading sensitivity kernel from u† and φ† using eq. (3.25).
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Figure 4. Location distribution used in the generation of a synthetic data set of vertical uplift measurements.

Figure 5. Comparison of the unscaled first ice load update
∫ t1

t Kσ̇ (t ′) dt ′ with true ice load σ (t) − σ (t1) used to generate the synthetic data set at times 21, 16
and 11 ka. As we are showing the model update prior to determining the scaling factor α in eq. (4.6), we do not show the absolute amplitudes of either of the
ice loads. However, the relative amplitude of the loads at each of the three time slices is plotted on the same scale and so is directly comparable.

We note that the dependence of K σ̇ on the forward deformation fields u and φ arises solely from that of the adjoint loads. Consequently,
simultaneous access to both the forward and adjoint deformations fields is not required in the calculation of the rate-of-loading kernel.

4.1.2 Rate-of-loading kernels for point observations

To illustrate the basic properties of the rate-of-loading kernels, we first consider point measurements in space and time of the deformation
fields. In doing so, we let the objective functional be either

J (u, φ) = n̂ · u(x′, t ′), (4.1)

or

J (u, φ) = −g−1φ(x′, t ′), (4.2)

which correspond, respectively, to the values of the vertical displacement and geoid anomaly at the point x′ ∈ ∂ M and time t′. Expressions
for the adjoint loads h† and h† corresponding to the objective functional in eq. (4.1) can be trivially found from eq. (C2) to be

h†(x, t) = −δ(x − x′)H (t ′ − t1 + t − t0)n̂, h†(x, t) = 0, (4.3)
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Figure 6. Viscosity sensitivity kernel corresponding to a point measurement of vertical displacement. In this calculation, the load was a delta function in
space located at the red triangle seen on the upper figure, while its time dependence was that of a Heaviside step function with unit amplitude. The vertical
displacement measurement was made 5000 yr after the onset of loading at the point indicated by the blue circle on the upper figure, which is separated from the
loading point by an angular distance of 6◦. For this calculation viscosity model 1 was used, and the calculations performed using spherical harmonic expansions
up to degree 80. In the upper figure a radial section through the kernel is shown along the great circular arc between the load and observation point, with radii
going from the CMB to the earth model’s surface. The 670 km discontinuity and base of the elastic lithosphere are also displayed. In the lower figure, this
radial section is plotted again along with three transverse radial sections that allow for the 3-D shape of the kernel to be better understood.

while those corresponding to the geoid measurement in eq. (4.2) are

h†(x, t) = 0, h†(x, t) = g−1δ(x − x′)H (t ′ − t1 + t − t0). (4.4)

In both cases the adjoint loads are independent of the forward deformation fields, and so calculation of the associated rate-of-loading kernels
requires only the solution of the adjoint viscoelastic loading problem. Due to the spherical symmetry of the earth model, it is clear that for
such measurements the rate-of-loading kernel will vary spatially only with angular distance from the observation point x′. Similarly, the time
dependence of K σ̇ is only through the difference t − t′, and due to causality we have K σ̇ = 0 for t > t′.

In Fig. 2, we plot the rate-of-loading kernel corresponding to a point measurement of vertical displacement as a function of angular
distance from the observation point x′ for values of t − t′ between −50 and 0 kyr. At any particular time, it is seen that the sensitivity of the
observation to the rate-of-loading σ̇ is greatest directly beneath the observation point, and that this sensitivity decreases in amplitude rapidly
with angular distance. At a fixed angular distance, we see from Fig. 2 that as t − t′ decreases the amplitude of the kernel increases at an
exponentially decreasing rate, tending to a constant value as t − t′ → −∞. This observation can readily be understood on physical grounds
by considering the transition from elastic to viscous behaviour that occurs in the earth model.
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Figure 7. Vertical displacement recorded at the observation point for loading problem described in the caption of Fig. 6.

For these particular calculations, we used viscosity model 2, and expanded the adjoint loads in spherical harmonics up to degree L = 80
using the smoothed delta function expansion described in Appendix E. The value of maximum spherical harmonic degree does influence the
spatial form of the rate-of-loading kernel, with higher values of L leading to kernels that are more narrowly distributed about the observation
point. As explained in Appendix E, the choice of L amounts an a priori assumption on the spatial smoothness of the load σ .

In a similar manner, Fig. 3 plots the rate-of-loading kernel corresponding to a point measurement of geoid anomaly as a function of
angular distance from the observation point x′ for values of t − t′ between −50 and 0 kyr. It is again seen that at any particular time the
sensitivity of the observation to the rate-of-loading σ̇ is greatest directly beneath the observation point, and that this sensitivity decreases in
amplitude with angular distance. At a fixed angular distance, however, we see that as t − t′ decreases the amplitude of the rate-of-loading
kernel decreases at an exponentially decreasing rate. Again, this observation can be readily understood from the increasing degree to which
the load is compensated during the transition from elastic to viscous behaviour in the earth model.

4.1.3 Rate-of-loading kernels for a vertical displacement data set

To examine the rate-of-loading kernels in a more elaborate example, we consider the objective functional defined in eq. (3.1). We recall
that this objective functional measures the least-squares misfit between a data set comprising vertical displacement measurements and a
corresponding set of synthetic vertical displacements calculated using given viscosity and load models. To generate such a data set, we
performed a forward calculation over the period 21 to 0 ka using viscosity model 2 along with the ice sheet model ICE-5G of Peltier (2004)
expanded in spherical harmonics up to degree 80. The vertical displacements were recorded at 100 randomly distributed coastal locations
xi shown in Fig. 4, and at each such location a randomly generated set of times tij for j = 1, . . . , N i

t was constructed such that the average
time interval between samples was 500 yr. To each of these data points dij, we added Gaussian random errors with zero mean and standard
deviation equal to 0.1 m. Similarly, we added zero mean Gaussian random errors to each of the times tij with standard deviation equal to
100 yr.

Having constructed such a data set, we can formulate an inverse problem to recover the ice load history, where for the moment we
assume that the viscosity model is exactly known. As a starting point, we assume that the model times t ′

i j coincide with the observed times
tij, and that the initial ice load σ 0 is given by the final time slice of ICE-5G. With these assumptions, the synthetic data n̂ · u(xi , t ′

i j ) are all
equal to zero, and we can calculate the associated value of objective functional J and the adjoint loads h† and h†. We then solve the adjoint
viscoelastic loading problem, and so obtain the rate-of-loading kernel K σ̇ .

To interpret this kernel it will be useful, however, to consider how we would construct the first update to the ice load using the steepest
descent algorithm. Within this method, the first update to the rate-of-loading is given by

σ̇1 = −αK σ̇ , (4.5)

where α is some positive constant whose value is determined using a suitable line search algorithm (e.g. Nocedal & Wright 2006). The
physical interpretation of σ̇1 is not, however, straightforward, and it is preferable to examine at the actual increment to the load

σ1(t) = σ0 + α

∫ t1

t
K σ̇ (t ′) dt ′, (4.6)
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Figure 8. Stages in the construction of the viscosity sensitivity kernel shown in Fig. 6. In each of these figures, the load’s position is denoted by a red triangle,
while that of the observation point is shown by a blue circle. In the uppermost two figures, the τ rr component of the deviatoric stress due to forward deformation
field is shown at times (a) 1000 yr and (b) 5000 yr after the onset of loading. In these two figures the colour scale remains fixed so that relative changes in

amplitude can be seen (this also the case for the other pairs of figures plotted below). On the next row is shown the τ
†
rr component of the deviatoric stress

due to the adjoint deformation field at the corresponding reversed times (c) 4000 yr and (d) 0 yr. The product of these two deviatoric stress fields weighted by
1

2η
is then plotted on the third row, this field being equal to r–r contribution to the integrand in the expression for the viscosity kernel given in eq. (4.9). The

lowermost pair of figures shows the partial contribution of the r–r component to the total viscosity obtained by numerically evaluating the integral in eq. (4.9)
up to the specified time limits. Note that the colour scale in these final two figures is the same as in Fig. 6.

where we have used the condition σ 1(t1) = σ 0 to fix the constant of integration. Writing σ for ice load used in generating the data set, we can
then visually compare σ (t) − σ (t1) with σ 1(t) − σ 1(t1) to see how successful the first iteration has been in recovering the true ice load. In fact,
we can simply ignore the scaling factor α and compare σ (t) − σ (t1) with

∫ t1
t K σ̇ (t ′) dt ′, so long as we only consider the relative amplitudes

of the two ice loads. Such a comparison can be seen in Fig. 5, where time slices of these two loads are plotted at 21, 16 and 11 ka. We note
that within these figures the colour scale remains fixed between the subsequent plots of σ (t) − σ (t1) so that relative changes in amplitude
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Figure 9. Stages in the construction of the viscosity sensitivity kernel shown in Fig. 6. In each of these figures, the load’s position is denoted by a red triangle,
while that of the observation point is shown by a blue circle. In the uppermost two figures, the τ rϕ component of the deviatoric stress due to forward deformation
field is shown at times (a) 1000 yr and (b) 5000 yr after the onset of loading. In these two figures the colour scale remains fixed so that relative changes in

amplitude can be seen (this also the case for the other pairs of figures plotted below). On the next row is shown the τ
†
rϕ component of the deviatoric stress

due to the adjoint deformation field at the corresponding reversed times (c) 4000 yr and (d) 0 yr. The product of these two deviatoric stress fields weighted by
1

2η
is then plotted on the third row, this field being equal to r–ϕ contribution to the integrand in the expression for the viscosity kernel given in eq. (4.9). The

lowermost pair of figures shows the partial contribution of the r–ϕ component to the total viscosity obtained by numerically evaluating the integral in eq. (4.9)
up to the specified time limits. Note that the colour scale in these final two figures is the same as in Fig. 6.

can be identified [and similarly for the plots of
∫ t1

t K σ̇ (t ′) dt ′]. Given that we are looking at only the first update of an iterative scheme, the
correspondence with the true model is actually quite good, with ice being added to the model in broadly correct locations. Furthermore, we
see that the relative change in amplitude with time between the two models is of about the same magnitude. Had we continued this iterative
process using steepest descent or some similar method, we would expect to gradually converge to an ice load that produces a good fit between
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Figure 10. Viscosity sensitivity kernel corresponding to a point measurement of vertical displacement. In this calculation, the load was a delta function in
space located at the red triangle seen on the upper figure, while its time dependence was that of a Heaviside step function with unit amplitude. The vertical
displacement measurement was made 5000 yr after the onset of loading at the point indicated by the blue circle on the upper figure, which is separated from
the loading point by an angular distance of 20◦. For this calculation, viscosity model 1 was used, and the calculations performed using spherical harmonic
expansions up to degree 80. In the upper figure, a radial section through the kernel is shown along the great circular arc between the load and observation
point, with radii going from the CMB to the earth model’s surface. The 670 km discontinuity and base of the elastic lithosphere are also displayed. In the lower
figure, this radial section is plotted again along with three transverse radial sections that allow for the 3-D shape of the kernel to be better understood.

the given data and our synthetic predictions. Whether such an ice model would resemble our input model in detail is, of course, a more
difficult question depending on the resolution in space and time obtainable from the given observations.

4.2 Viscosity sensitivity kernels

4.2.1 Computational details

The viscosity kernel Kη corresponding to a given objective functional J may be calculated in the following manner:

(1) Solve the forward viscoelastic loading problem to determine the deformation fields u and φ, and compute the associated deviatoric
stress tensor τ .

(2) From u and φ calculate the adjoint loads h† and h† associated with J through eqs (3.9), (3.17) and (3.18).
(3) Using these adjoint loads, solve the adjoint viscoelastic loading problem to obtain the adjoint deformation fields u† and φ†, and compute

the associated deviatoric stress tensor τ †.
(4) Compute the viscosity sensitivity kernel from τ , and τ † using eq. (3.22).
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In contrast to the rate-of-loading kernel, computation of the viscosity kernel requires simultaneous access to both the forward and
adjoint deformation fields. In the calculations we have performed, it has been possible to store the entire time history of both the forward and
adjoint deformation fields in memory, and so computation of the viscosity kernel using eq. (3.22) has been straightforward. Looking towards
calculations in laterally heterogeneous earth models, memory requirements for storing the necessary stress fields will, of course, be higher.
Given the relatively small number of time steps required in these calculations (as, say, compared to elastic wave propagation problems), it
should, however, still be possible to store the required fields in memory (Hom-Nath Gharti, personal communication, 2013).

4.2.2 Viscosity kernels for point measurements of vertical displacement

To illustrate the basic properties of the viscosity kernel we again consider the objective functional

J (u, φ) = n̂ · u(x′, t ′), (4.7)

which corresponds to the value of the vertical displacement at the point x′ ∈ ∂ M and time t′. In contrast to the case of the rate-of-loading
kernel, to calculate the viscosity kernel we must explicitly specify the load that produced the forward deformation field. To keep the problem
as simple as possible, we take this load to be

σ (x, t) = δ(x − xs)H (t − ts), (4.8)

where xs ∈ ∂ M is the loading point, and ts is the time at which the load is applied. Due to the spherical symmetry of the earth model, the
form of the viscosity kernel does not depend upon the absolute positions of x′ and xs , but only upon their angular separation. We emphasize,
however, that even within spherical symmetric earth models the viscosity kernels are not spherically symmetric functions.

In Fig. 6, we plot such a viscosity kernel, with the angular separation between the load and observation points being equal to 6◦, and the
vertical displacement measurement made 5000 yr after the onset of loading. For this calculation we used viscosity model 1, and expanded all
fields up to spherical harmonic degree 80. It is seen that the viscosity kernel has a broad region of positive sensitivity located in the upper
portion of the mantle between the load and observation points and that its amplitude decays to zero away from this region. Moreover, the
kernel is smooth, displaying no clear dependence upon discontinuities in the elastic structure of the earth model. In Fig. 7, we plot the vertical
displacement at the observation point for 10 kyr following the onset of loading. It is seen that initially there is a small elastic subsidence which
increases in amplitude at an exponentially decreasing rate due to viscous flow in the mantle. The positivity of the viscosity kernel implies
that if we increased the mantle viscosity uniformly, then the vertical displacement at the observation point would be larger (i.e. less negative).
This result makes physical sense, as a higher mantle viscosity would slow down the viscous relaxation, and so diminish the magnitude of the
subsidence that could have accumulated prior to the observation time.

To develop intuition about the viscosity kernel in Fig. 6, it will be useful to consider how it is constructed through the combination of the
forward and adjoint deviatoric stress fields τ and τ †, respectively. Expressing these tensor fields in terms of their spherical polar components,
we can rewrite eq. (3.22) as

Kη =
∫ t1

t0

1

2η

(
τrrτ

†
rr + 2τrθ τ

†
rθ + 2τrϕτ

†
rϕ + τθθ τ

†
θθ + 2τθϕτ

†
θϕ + τϕϕτ

†
ϕϕ

)
dt, (4.9)

where it is understood that the forward fields are evaluated at the time t, while the adjoint fields are evaluated at the reversed time t1 − t + t0. In
Fig. 8, we have plotted the r–r components of τ (t) and τ †(t1 − t + t0) for t = t0 + 1000 yr and t = t0 + 5000 yr. Also plotted is the associated
contribution to the integrand in eq. (4.9) at these times, along with the result of evaluating this integral up until the specified time limits. In
Fig. 9, we similarly plot the contribution of the r–ϕ components to the viscosity kernel. In these figures we see that the stress components
have high amplitudes in the upper mantle beneath their respective loads, and that their amplitude decays quite rapidly with increasing depth.
The load and observation points are located quite close to one another in this example, and, as a result, the product of the stress components
have highest amplitudes at shallow depths, and are concentrated in the area between load and observation points.

As a second example, we repeat the above calculations but now place the observation point at an angular distance of 20◦ from the load.
The resulting sensitivity kernel is plotted in Fig. 10, and the vertical displacement time-series at the observation point can be seen in Fig. 11.
The viscosity kernel is again seen to be concentrated in a region lying between the load and observation points, but in this case the sign
of the kernel in the upper portion of the mantle is reversed and there is a diminished sensitivity to the viscosity structure in the uppermost
mantle beneath the lithosphere. Furthermore, we see that there is a small positive sensitivity within the lower mantle, including an area lying
just above the core–mantle boundary (CMB). The sign change of the kernel in the upper mantle can be understood from Fig. 11, where we
see that the vertical displacement at the observation point has a more complex evolution in time. In particular, at the observation time of
5000 yr the rate of change of the vertical displacement is positive. Increasing the upper-mantle viscosity would slow the viscous relaxation,
and so would in turn decrease the observed displacement. An interesting feature of this example is that the larger separation of the load and
observation points leads the products of the stress components take more complex form, and to possess increased amplitudes at greater depths.
In particular, we see how sensitivity to viscosity structures near the CMB can be generated even though neither the forward nor adjoint stress
fields have large amplitudes in this region.

In the two examples described above, the calculations were performed using viscosity model 1 which, we recall, has a simple uniform
mantle viscosity. Because the dependence of the deformation fields on the viscosity is non-linear, these kernel are influenced by the choice of

 at C
am

bridge U
niversity L

ibrary on January 24, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


Viscoelastic sensitivity kernels 55

Figure 11. Vertical displacement recorded at the observation point for loading problem described in the caption of Fig. 10.

Figure 12. The strong dependence of the viscosity sensitivity kernel on the background viscosity model can be seen by recalculating the kernel corresponding
to a particular measurement using different viscosity models. For these calculations, we replicated exactly the steps used to produced the kernels seen in Figs 6
and 10, with the only difference being the choice of viscosity model.

reference viscosity model. To conduct a preliminary investigation of this effect we have repeated the calculations done to produce the kernels
in Figs 6 and 10 with all parameters remaining the same but for the viscosity model, which was taken to be either model 2 or model 3, as
shown in Fig. 1. The viscosity kernels resulting from these calculations can be seen in Fig. 12. An important feature of both viscosity models
2 and 3 is the presence of a discontinuity at 670 km, which separates a low-viscosity upper mantle from a higher viscosity lower mantle.
Physically, low viscosities within the upper mantle tend to concentrate flow within this region, and so leads to the increased sensitivity of
surface observations to the upper-mantle viscosity structure, which can clearly be seen in Fig. 12.

In addition to the 3-D viscosity kernels Kη shown above, we can also calculate the corresponding radial viscosity kernels K η. For
these calculations we make use of eq. (F3), which allows the radial kernels to be calculated in a very efficient manner. In Fig. 13, we plot
the radial viscosity kernels corresponding to the volumetric kernels in Figs 6 and 10. The basic properties of these radial kernels can be
readily understood by comparison with the volumetric kernels. Such radial viscosity kernels could be used in the construction of radial
viscosity models from GIA observations as has been done previously using approximate kernels calculated using finite difference methods
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Figure 13. Radial viscosity sensitivity kernels corresponding to the volumetric kernels shown in Figs 6 and 10. These radial kernels were calculated from
eq. (F3) using viscosity model 1 and with all fields again expanded in spherical harmonics up to degree 80.

(e.g. Mitrovica & Peltier 1991; Peltier 2004). The use of the adjoint method does, however, offer the advantage that the kernels are exact and
can be calculated in an efficient manner requiring only one simulation of forward loading problem and one further simulation of the adjoint
loading problem. This is in comparison to the calculation of finite difference kernels, which require repeated solution of the forward problem.

4.2.3 Kernels for relaxation times

As a final example, we consider viscosity kernels corresponding to measurements of relaxation times from rebound curves as described in
example (5) of Appendix C. To do so, we make use of the point load defined in eq. (4.8) and generate the time-series of vertical displacements
shown in Fig. 14(a). Here, the observation point located 6◦ away from the load, and the displacements are sampled every 500 yr for 10 000 yr
after the onset of loading. In the calculation we used viscosity model 1, and again expanded all fields up to spherical harmonic degree 80.

From this time-series, we determined the best-fitting relaxation curve in the form of eq. (C12) using the method described in Appendix C.
The resulting curve is also plotted on Fig. 14(a), and is found to have a relaxation time of 1/s = 8255 yr (note that negligibly small random
errors where added to the synthetic data, but these have essentially no effect on the obtained parameters a, b and s). Making use of eq. (C26),
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Figure 14. Viscosity sensitivity kernel corresponding to a relaxation time measurement calculated using viscosity model 1. For this calculation, the load was a
delta function in space located at the red triangle seen on the lower figure, while its time dependence was that of a Heaviside step function with unit amplitude.
Vertical displacements were recorded every 500 yr for 10 000 yr after the onset of loading at the point indicated by the blue circle on the lower figure, and are
plotted as black circles on the uppermost figure. A best-fitting decaying exponential given by eq. (C12) was obtained, and the corresponding relaxation curve
is shown on the upper figure with a solid line. For this problem, the best-fitting parameter were: a = 2.96 m, b = −12.59 m and 1/s = 8255 yr. In the lower
figure, the viscosity sensitivity kernel corresponding to the relaxation time measurement is plotted.

we then calculated the adjoint load for this measurement, and so determined the corresponding viscosity kernel, which is shown in shown in
Fig. 14(b). It is seen that the kernel for the relaxation time measurement differs substantially from that for a point measurement of displacement
shown in Fig. 6. In particular, this kernel is concentrated in the uppermost few hundred kilometres of the sublithospheric mantle. We also
performed a similar calculation using viscosity model 2, with the results shown in Fig. 15. In both cases, the viscosity kernel is either solely
or largely positive in sign, this being consistent with the physical expectation that larger viscosities increase the timescale over which the
earth model responds to surface loading.

As discussed by Lambeck (2006), by fitting parametric curves to such observations we are not actually incorporating the physics of the
problem, and so need not learn anything of value. However, a great virtue of the adjoint method is that it allows us to rigorously associate
sensitivity kernels with complex data measurements for which there exists no simple physical relation to the underlying model. In the present
case, these kernels show, in a linearized sense, what information such relaxation time measurements truly contain about the viscosity structure.
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Figure 15. As with Fig. 14, but here the calculations were performed in viscosity model 2, and the best-fitting parameters were: a = 1.28 m, b = −12.99 m
and 1/s = 4834 yr.

5 C O N C LU S I O N S

We have presented an application of the adjoint method to the surface loading of viscoelastic earth models. Using this method we can
efficiently calculate sensitivity kernels that express the linearized sensitivity of a given objective functional to both mantle viscosity and the
time derivative of the surface load. Calculation of these sensitivity kernels requires one solution of the forward viscoelastic loading problem
and one solution of the adjoint viscoelastic loading problem. This is in stark contrast to finite difference approximations of the derivatives,
which rapidly become impractical as the number of model parameters increases. Moreover, this adjoint problem is of exactly the same form
as the forward problem and so can be solved using the same numerical methods. The derivation of the adjoint viscoelastic loading problem
in eq. (3.20), and the corresponding expressions for the viscosity kernel Kη in eq. (3.22), and the rate-of-loading kernel K σ̇ in eq. (3.25)
constitute our main results. With access to a suitable numerical code, this adjoint method could readily be applied to viscoelastic loading in
laterally heterogeneous earth models.

As we have not taken into account gravitationally self-consistent ocean loading, nor rotational feedbacks, the theory presented in this
paper is not directly applicable to the GIA inverse problem. An extension of the adjoint methods to this more complex problem is possible,
and will be presented in a future paper. In carrying out this extension, a major role is played by the rate formulation of the viscoelastic loading
problem employed here. In fact, it was the consideration of the full GIA problem that motivated the development of this rate formulation, and
it is in this context that its full advantages will be seen.
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A P P E N D I X A : J U M P C O N D I T I O N S F O R T H E R AT E F O R M U L AT I O N
O F T H E V I S C O E L A S T I C L OA D I N G P RO B L E M

In the derivation of the rate formulation of the viscoelastic loading problem given in Section 2.3, we assumed that σ is a piecewise
continuously differentiable function of time. In practice, it is, however, often useful to consider surface loads that possesses a finite number
of jump discontinuities. Physically, we expect that the response of the earth model to such a step load will be instantaneously elastic, and this
is indeed found to be the case. Letting t be a time at which σ undergoes the finite jump

�σ (t) = lim
h→0

[σ (t + h) − σ (t − h)] , (A1)
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we write �u, �φ and �m, for the corresponding jumps in u, φ and m. Through a limiting argument it may be shown that

�m = 0, (A2)

while �u and �φ must satisfy the static loading problem

− ∇ · (κ∇ · �u I + 2μ0ḋ
)+ ∇(ρ�u · ∇	) − ∇ · (ρ�u)∇	 + ρ∇�φ = 0, (A3)

and

(4πG)−1∇2�φ =

⎧⎪⎪⎨
⎪⎪⎩

−∇ · (ρ�u) x ∈ MS

g−1�φ∂nρ x ∈ MF

0 x ∈ R
3 \ Mcl

, (A4)

which is subject to the boundary conditions

n̂ · (κ∇ · �u I + 2μ0�d) = −�σ∇	, x ∈ ∂ M, (A5)

[n̂ · (κ∇ · �u I + 2μ0�d)]+− = 0, x ∈ �SS, (A6)

n̂ · (κ+∇ · �u+ I + 2μ+
0 �d+) = ρ−[�u+ · ∇	 + φ]n̂, x ∈ �FS, (A7)

n̂ · (κ−∇ · �u− I + 2μ−
0 �d−) = ρ+[�u− · ∇	 + φ]n̂, x ∈ �SF, (A8)

[�u]+− = 0, x ∈ �SS, (A9)

[�φ]+− = 0, x ∈ �, (A10)

[
(4πG)−1n̂ · ∇�φ

]+
− − ρ−n̂ · �u− = �σ, x ∈ ∂ M, (A11)

[
(4πG)−1n̂ · ∇�φ + ρn̂ · �u

]+
− = 0, x ∈ �SS, (A12)

[
(4πG)−1n̂ · ∇�φ

]+
− + [ρ]+− n̂ · �u+ = 0, x ∈ �FS, (A13)

[
(4πG)−1n̂ · ∇�φ

]+
− + [ρ]+− n̂ · �u− = 0, x ∈ �SF, (A14)

along with the condition that �φ → 0 as ‖x‖ → ∞. By combining these jump conditions with the evolution equations given in Section 2.3,
we obtain the desired time-domain formulation of the viscoelastic loading problem in the case that the surface load is piecewise continuous.

A P P E N D I X B : D E R I VAT I O N O F T H E W E A K F O R M O F T H E V I S C O E L A S T I C L OA D I N G
P RO B L E M

B1 Operator notation for the strong form of the loading problem

To obtain the weak form of the viscoelastic loading problem given in eq. (2.51), it will be useful to first restate the strong form of the problem
in a concise operator notation. We begin by defining the partial differential operators

A11u = −∇ · (κ∇ · u 1 + 2μd) + ∇(ρu · ∇	) − ∇ · (ρu)∇	, (B1)

A12φ = ρ∇φ, (B2)
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A21u =
{−∇ · (ρu) x ∈ MS

0 x /∈ MS

, (B3)

A22φ =
{ −(4πG)−1∇2φ x ∈ R

3 \ MF

−(4πG)−1∇2φ + g−1φ∂nρ x ∈ MF

, (B4)

where u and φ are suitably regular vector and scalar fields defined, respectively, on MS and R
3 that satisfy the kinematic boundary conditions

[u]+− = 0, x ∈ �SS, (B5)

[φ]+− = 0, x ∈ �, (B6)

and d is the deviatoric strain tensor associated with u. For such fields we also introduce the boundary operators

B11u =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n̂ · (κ∇ · u 1 + 2μd) x ∈ ∂ M

− [n̂ · (κ∇ · u 1 + 2μd)]+− x ∈ �SS

−n̂ · (κ+∇ · u+ 1 + 2μ+d+) + ρ−u+ · ∇	n̂ x ∈ �FS

n̂ · (κ−∇ · u− 1 + 2μ−d−) − ρ+u− · ∇	n̂ x ∈ �SF

, (B7)

B12φ =

⎧⎪⎪⎨
⎪⎪⎩

0 x ∈ ∂ M ∪ �SS

ρ−φn̂ x ∈ �FS

−ρ+φn̂ x ∈ �SF

, (B8)

B21u =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ−u− · n̂ x ∈ ∂ M

− [ρu · n̂]+− x ∈ �SS

− [ρ]+− u+ · n̂ x ∈ �FS

− [ρ]+− u− · n̂ x ∈ �SF

, (B9)

B22φ = −(4πG)−1 [n̂ · ∇φ]+− x ∈ �, (B10)

where, as above, superscripts ± indicate on which side a boundary the enclosed term is evaluated. Finally, we define the operator acting on
symmetric second-order tensor fields by

Rm = −∇ ·
(

2μ0

τ
m

)
, (B11)

and also the associated boundary operator

Sm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2μ−
0

τ− n̂ · m x ∈ ∂ M

−
[

2μ0
τ

n̂ · m
]+

−
x ∈ �SS

2μ+
0

τ+ n̂ · m+ x ∈ �FS

− 2μ−
0

τ− n̂ · m− x ∈ �SF

. (B12)

With these notations, it is a simple matter to verify that the strong form of the time-domain viscoelastic loading problem given in eqs (2.37)
and (2.38) can be written

A11u̇ + A12φ̇ + R(m − d) = 0, (B13)

A21u̇ + A22φ̇ = 0, (B14)

ṁ + 1

τ
(m − d) = 0, (B15)

while the boundary conditions for the problem can be similarly expressed as

B11u̇ + B12φ̇ + S(m − d) = −σ̇∇	, (B16)
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B21u̇ + B22φ̇ = −σ̇ , (B17)

where for convenience we have extended σ to equal zero for x /∈ ∂ M .

B2 Green’s identities

Letting u′ and φ′ be test functions also satisfying the kinematic boundary conditions given in eqs (B5) and (B6), we shall now establish the
following Green’s identity

A(u, φ | u′, φ′) =
∫

MS

A11u · u′ dV +
∫

MS

A12u φ′ dV +
∫

MS

A21φ u′ dV +
∫

R3
A22φ φ′ dV +

∫
�

B11u · u′ dS +
∫

�

B12u φ′ dS

+
∫

�

B21φ u′ dS +
∫

�

B22φ φ′ dS, (B18)

where A is the symmetric form defined in eq. (2.52). To obtain this result, it is useful to consider each of the volume integrals on the right-hand
side of this identity in turn. First, using the above definitions we have∫

MS

A11u · u′ dV = −
∫

MS

∇ · (κ∇ · u I + 2μd) · u′ dV +
∫

MS

[∇(ρu · ∇	) − ∇ · (ρu)∇	] · u′ dV . (B19)

Integrating the first term on the right-hand side of this equation by parts we find

−
∫

MS

∇ · (κ∇ · u I + 2μd) · u′ dV =
∫

MS

κ∇ · u ∇ · u′ dV +
∫

MS

2μd : d′ dV −
∫

∂ M
n̂ · (κ∇ · u I + 2μd) · u′ dS

+
∫

�SS

[n̂ · (κ∇ · u I + 2μd)]+− · u′ dS +
∫

�FS

n̂ · (κ∇ · u I + 2μd) · u′ dS

−
∫

�SF

n̂ · (κ∇ · u I + 2μd) · u′ dS, (B20)

and recalling the definition of the boundary operator B11, we can alternatively write the surface integral terms to obtain

−
∫

MS

∇ · (κ∇ · u I + 2μd) · u′ dV =
∫

MS

κ∇ · u ∇ · u′ dV +
∫

MS

2μd : d′ dV −
∫

�

B11u · u′ dS +
∫

�FS

ρ−gn̂ · u n̂ · u′ dS

−
∫

�SF

ρ+gn̂ · u n̂ · u′ dS, (B21)

where we have also made use of the relation ∇	 = gn̂ for x ∈ �. In dealing with the term∫
MS

[∇(ρu · ∇	) − ∇ · (ρu)∇	] · u′ dV, (B22)

we first require the identity

∇(ρu · ∇	) − ∇ · (ρu)∇	 = ρ∇(u · ∇	) + ∇ρu · ∇	 − ρ∇ · u∇	 − ∇ρ · u∇	

= ρ {∇(u · ∇	) − ∇ · u∇	} , (B23)

which follows from the hydrostatic condition that ∇	 and ∇ρ are parallel. From this result we obtain

[∇(ρu · ∇	) − ∇ · (ρu)∇	] · u′ = ρ [∇(u · ∇	) − ∇ · u∇	] · u′

= ∇(u · ∇	) · ρu′ − ∇ · u ρ∇	 · u′

= ∇ · (ρu · ∇	 u′ − ρu′ · ∇	 u
)+ u · [∇(ρu′ · ∇	) − ∇ · (ρu′)∇	

]
= ∇ · (ρu · ∇	 u′ − ρu′ · ∇	 u

)+ ρu · [∇(u′ · ∇	) − ∇ · u′∇	
]
. (B24)

Integrating the first term of the final equality we find∫
MS

∇ · (ρu · ∇	 u′ − ρu′ · ∇	 u
)

dV = −
∫

�

[
ρu · ∇	 u′ · n̂ − ρu′ · ∇	 u · n̂

]+
− dS, (B25)

but the hydrostatic condition implies that ∇	 = gn̂, so that this integral vanishes, and we obtain∫
MS

[∇(ρu · ∇	) − ∇ · (ρu)∇	] · u′ dV =
∫

MS

ρu · [∇(u′ · ∇	) − ∇ · u′∇	
]

dV . (B26)
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We can write the integrand on the right-hand side as

ρu · [∇(u′ · ∇	) − ∇ · u′∇	
] = u · [ρ∇(u′ · ∇	) − ρ∇ · u′∇	

]
= u · [∇(ρu′ · ∇	) − ∇ρu′ · ∇	 − ∇ · (ρu′)∇	 + ∇ρ · u′∇	

]
= u · [∇(ρu′ · ∇	) − ∇ · (ρu′)∇	

]
, (B27)

where the final equality again follows from the hydrostatic condition. We, therefore, obtain the identity∫
MS

[∇(ρu · ∇	) − ∇ · (ρu)∇	] · u′ dV =
∫

MS

u · [∇(ρu′ · ∇	) − ∇ · (ρu′)∇	
]

dV, (B28)

which shows that the integral on the left-hand side is, in fact, symmetric in u and u′. We can, alternatively, write this integral in an explicitly
symmetric form∫

MS

{∇(ρu · ∇	) − ∇ · (ρu)∇	} · u′ dV = 1

2

∫
MS

ρ
[∇(u · ∇	) · u′ + u · ∇(u′ · ∇	)

]
dV − 1

2

∫
MS

ρ
[∇ · u ∇	 · u′ + ∇	 · u ∇ · u′] dV,

(B29)

where we have used eq. (B26) along with the corresponding equation with u and u′ transposed. Combining eqs (B21) and (B29), we can now
write∫

MS

A11u · u′ dV +
∫

�

B11u · u′ dS =
∫

MS

κ∇ · u ∇ · u′ dV +
∫

MS

2μd : d′ dV + 1

2

∫
MS

ρ
[∇(u · ∇	) · u′ + u · ∇(u′ · ∇	)

]
dV

−1

2

∫
MS

ρ
(∇ · u ∇	 · u′ + ∇	 · u ∇ · u′) dV . +

∫
�FS

ρ−gn̂ · u n̂ · u′ dS −
∫

�SF

ρ+gn̂ · u n̂ · u′ dS.

(B30)

Turning now to the third term on the right-hand side of eq. (B18), we find using integration by parts∫
MS

A21u φ′ dV =
∫

MS

ρu · ∇φ′ dV +
∫

�

[ρn̂ · u]+− φ′ dS

=
∫

MS

u · A12φ
′ dV −

∫
�

B21u φ′ dS +
∫

�

u · B12φ
′ dS, (B31)

where in obtaining the final equality we have recalled the definition of the boundary operators B12 and B21. Using this result we can now
write∫

MS

A21u φ′ dV +
∫

�

B21u φ′ dS +
∫

MS

u · A12φ
′ dV +

∫
�

u · B12φ
′ dS =

∫
MS

ρ(∇φ · u′ + u · ∇φ′) dV +
∫

�FS

ρ−(φ u′ + u φ′) · n̂ dS

−
∫

�SF

ρ+(φ u′ + u φ′) · n̂ dS. (B32)

Finally, considering the fourth term on the right-hand side of eq. (B18) and using integration by parts we find∫
R3

A22φ φ′ dV +
∫

�

B22φ φ′ dS = 1

4πG

∫
R3

∇φ · ∇φ′ dV +
∫

MF

g−1φ φ′∂nρ dV . (B33)

Adding eqs (B30), (B32) and (B33), we then obtain the desired Green’s identity.

B3 Derivation of the weak form

Using the above results, the derivation of the weak form of the viscoelastic loading problem proceeds as follows. From the Green’s identity
in eq. (B18), we can write

A(u̇, φ̇ | u′, φ′) =
∫

MS

A11u̇ · u′ dV +
∫

MS

A12u̇ φ′ dV +
∫

MS

A21φ̇ u′ dV +
∫

R3
A22φ̇ φ′ dV +

∫
�

B11u̇ · u′ dS +
∫

�

B12u̇ φ′ dS

+
∫

�

B21φ̇ u′ dS +
∫

�

B22φ̇ φ′ dS, (B34)

where u and φ are solutions of the strong form of the viscoelastic loading problem, and u′ and φ′ are arbitrary test functions. Substituting eqs
(B13) to (B17) into the right-hand side of eq. (B34) and making use of the readily verified identity∫

MS

R(m − d) · u′ dV +
∫

�

S(m − d) · u′ dS =
∫

MS

2μ0

τ
(m − d) : d′ dV, (B35)
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we obtain

A(u̇, φ̇ | u′, φ′) +
∫

MS

2μ0

τ
(m − d) : d′ dV +

∫
∂ M

(∇	 · u′ + φ′)σ̇ dS = 0. (B36)

Considering now eq. (2.32), we see trivially that∫
MS

2μ0

[
ṁ + 1

τ
(m − d)

]
: m′ dV = 0, (B37)

for any sufficiently regular test function m′. Finally, we subtract eq. (B37) from eq. (B36) to obtain

A(u̇, φ̇ | u′, φ′) −
∫

MS

2μ0

[
ṁ : m′ + 1

τ
(d − m) : (d′ − m′)

]
dV +

∫
∂ M

(∇	 · u′ + φ′)σ̇ dS = 0, (B38)

which must hold for all u′, φ′ and m′, and constitutes the desired weak form of the viscoelastic loading problem. We note that though the
inclusion of the factor of 2μ0 in eq. (B37), and the choice of sign in combining eqs (B36) and (B37) were essentially arbitrary, they were
made so as to maximize the symmetry of the equations, and, in particular, to insure that forward and adjoint loading problems have exactly
the same form.

Repeating the above argument, we can also obtain a weak form of the jump conditions on u and φ given in Appendix A as

A(�u, �φ | u′, φ′) +
∫

∂ M
(∇	 · u′ + φ′)�σ dS = 0, (B39)

which must hold for all u′ and φ′ at those times when the load σ undergoes a finite jump discontinuity. Similarly, in the adjoint viscoelastic
loading problem described in Section 3.2 we note that if the adjoint loads h† or h† undergo a finite jump discontinuities at a time t, then the
weak form of this problem given in eq. (3.20) must be supplemented by �m† = 0 and the jump conditions

A(�u†,�φ† | δu, δφ) −
∫

∂ M
(�h† · δu + �h†δφ) dS = 0, (B40)

which must hold for all δu and δφ.

A P P E N D I X C : E X A M P L E O B J E C T I V E F U N C T I O NA L S

The objective functional J used in the adjoint method can be very general. In this appendix, we describe a number of further examples, and
give formulae for the associated Fréchet kernels h and h required in the construction of the adjoint loads.

(1) First, we consider a point measurement of vertical displacement made at a given location x′ ∈ ∂ M and time t′ ∈ [t0, t1]. In this case, we
have

J (u, φ) = n̂ · u(x′, t ′), (C1)

and can then write δJ in the form of eq. (3.9) by taking

h(x, t) = −δ(x − x′)H (t ′ − t)n̂, h(x, t) = 0. (C2)

(2) We now consider a point measurement of an arbitrary component of the surface velocity as could be measured using GPS networks
deployed in formerly glaciated regions (e.g. Milne et al. 2001). In practice, we cannot, however, measure the velocity field directly, and
must approximate its value using changes in displacement measurements over some finite time interval. Considering the simplest such
approximation, we take as objective functional

J (u, φ) = 1

�t
ν̂ · [u(x′, t ′ + �t) − u(x′, t ′)

]
, (C3)

where ν̂ is a given unit vector in the measurement direction, x′ is the observation point on ∂M, t′ the time of the first displacement measurement
and �t the time interval between the two measurements. Corresponding to this objective functional, we obtain an expression for δJ in the
form of eq. (3.9) by setting

h(x, t) = − 1

�t
δ(x − x′)

[
H (t ′ + �t − t) − H (t ′ − t)

]
ν̂, h(x, t) = 0. (C4)

Our use of a finite difference expression for the velocity in eq. (C3) is not only more representative of practical measurements, but is also
convenient from a theoretical perspective. This is because the corresponding rate-of-loading kernel can be shown to be non-singular, while if
we had instead included the actual point value of the velocity field in eq. (C3), the rate-of-loading kernel would possess a delta function like
singularity at the observation time.

(3) Next, we consider two examples motivated by gravity measurements, such as those provided by the Gravity Recovery and Climate
Experiment (GRACE) satellite (e.g. Adam 2002). First, we suppose that we have measured the spherical harmonic coefficient of degree l
and order m of the perturbed gravitational potential φ at the time t′. We shall assume that this coefficient is defined with respect to the real
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spherical harmonics Ylm defined in appendix B.7 of Dahlen & Tromp (1998) as they are better suited to applications with real-valued fields.
We can then write

φlm(t ′) = 1

a2

∫
∂ M

Ylm(θ, ϕ) φ(a, θ, ϕ, t ′) dS, (C5)

where, for simplicity, we have assumed that the surface of the earth model ∂M is a sphere with radius a. If we now take

J (u, φ) = φlm(t ′), (C6)

then we can write δJ in the form of eq. (3.9) by setting

h(x, t) = 0, h(x, t) = − 1

a2
Ylm(θ, ϕ)H (t ′ − t), (C7)

where (θ , ϕ) are the usual spherical polar coordinates on ∂M.
(4) We can build on the previous example by considering a GRACE-like data set comprising discrete time-series {φlm, j} of spherical

harmonic coefficients in the range of angular degrees 2 ≤ l ≤ L and times tj for j = 1, . . . , Nt. Relative to the timescale of GIA, the timing
of such GRACE measurements are precisely known and so the tj can be taken as error-free. The measured coefficients will, however, still
be subject to errors, which we suppose to be uncorrelated in time, have zero mean, and possess a time-independent non-singular covariance
matrix with components Clm,l ′m′ . We can take as objective functional the quadratic misfit between the observed gravity coefficients φlm, j and
the synthetic predictions φlm(tj) calculated in a given model

J (u, φ) = 1

2Nt (L + 1)2

Nt∑
j=1

∑
lml ′m′

[φlm(t j ) − φlm, j ](C
−1)lml ′m′ [φl ′m′ (t j ) − φl ′m′, j ], (C8)

where (C−1)lml ′m′, j are components of the inverse covariance matrix, and for brevity we have left the index ranges in the spherical harmonic
sums implicit. Perturbing φ in this expression, we find

δ J = 1

Nt (L + 1)2

⎧⎨
⎩

Nt∑
j=1

∑
lml ′m′

[φlm(t j ) − φlm, j ](C
−1)lml ′m′δφl ′m′ (t j )

⎫⎬
⎭ , (C9)

where we have made use of the symmetry of the covariance matrix. From the results of the previous example, we can write δJ in the form of
eq. (3.9) by taking

h(x, t) = 0, (C10)

h(x, t) = −1

Nt (L + 1)2a2

Nt∑
j=1

{∑
lml ′m′

[φlm(t j ) − φlm, j ](C
−1)lml ′m′Yl ′m′ (θ, ϕ)

}
H (t j − t). (C11)

(5) As a final example, we consider a more elaborate objective functional whose dependence on the deformation fields u and φ is defined
through a subsidiary optimization problem. Let x′ be a location on ∂M at which we have recorded vertical displacements dj at times tj for j = 1,
. . . , Nt. In formerly glaciated areas, it has been observed that such rebound curves can in some circumstance be approximated parametrically
by decaying exponentials of the form

d j = ae−st ′j + b, j = 1, . . . , Nt , (C12)

where a and b are amplitude parameters, s is an ‘inverse decay time’, and t ′
j are model times that have again been introduced to account for

timing errors in the data (e.g. Mitrovica & Peltier 1993). See Lambeck (2006) for an interesting discussion on the appropriateness of such
measurements.
The best-fitting parameters can be found by minimizing the quadratic misfit functional

χ = 1

2Nt

Nt∑
j=1

{
1

�d2
j

(ae−st ′j + b − d j )
2 + 1

�t2
j

(t ′
j − t j )

2

}
, (C13)

where, for simplicity, we have assumed that the data are subject to uncorrelated, zero-mean, random errors with tj and dj having variances
equal to �t2

j and �d2
j , respectively. Introducing for convenience a 2Nt-dimensional ‘data vector’ d and a (Nt + 3)-dimensional ‘parameter
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vector’ q by

d =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

d1

...

dNt

t0

...

tNr ,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

s

t ′
0

...

t ′
Nt

,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C14)

we can then state this optimization problem as finding the q that minimizes the function q �→ χ (q, d) for given d. If q̃ is the solution to this
problem, then we must have

(∇qχ )(q̃, d) = 0, (C15)

where ∇qχ denotes the gradient of χ with respect to the parameter vector, and the above notation means that this gradient is evaluated at
the point (q̃, d). Moreover, for this point to be a local minimum of χ , the Hessian ∇q∇qχ must be positive-definite at q̃. Such a best-fitting
parameter vector can be determined iteratively from an initial guess q0, say, using Newton’s method

qi+1 = qi − γ
[
(∇q∇qχ )(qi , d)

]−1
(∇qχ )(qi , d), (C16)

to produce a sequence of parameter vectors that converges to the desired q̃. Here, 0 < γ ≤ 1 is damping parameter used to stabilize the
iterations.

Alternatively, we can apply this exact process to synthetic data calculated for given model parameters {σ , η}. We can then regard a, b and
s as being functions of the synthetic deformation fields u and φ and, in turn, the model parameters {σ , η}. For objective functional, we now
take

J (u, φ) = f (q̃), (C17)

with f a given function and q̃ the best-fitting parameter vector. In particular, we could take f (q̃) = 1/s̃, which is equal to the best-fitting
relaxation time for the rebound curve. For such an objective functional we now derive an expression for its first-order perturbation of the form
of eq. (3.9).
Letting d be the data vector corresponding to the given synthetic displacement vector u, we again write q̃ for the best-fitting parameter vector.
If we now perturb the deformation field by δu, we can write the associated perturbation to the data vector as

δd =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n̂ · δu(x′, t0)

...

n̂ · δu(x′, tNt )

0

...

0,

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C18)

where the lower half of this vector comprises Nt terms equal to zero due to the times tj remaining unchanged. This expression can alternatively
be written in the form

δd =
∫ t1

t0

∫
∂ M

P(x, t)δu(x, t) dS dt, (C19)

where P is a matrix-valued function given by

P(x, t) = −
Nt∑
j=1

δ(x − x′)H (t j − t)ê j ⊗ n̂, (C20)

with ê j an 2Nt-dimensional vector whose jth component is equal to 1, while all others vanish. Corresponding to the perturbation in d, the
best-fitting parameter vector is modified so that

(∇qχ )(q̃ + δq̃, d + δd) = 0. (C21)

Expanding this equation to first order in perturbed quantities, we obtain

δq̃ = −[(∇q∇qχ )(q̃, d)]−1[(∇q∇dχ )(q̃, d)]δd, (C22)
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which together with eq. (C19) implies that

δq̃ =
∫ t1

t0

∫
∂ M

Q(x, t)δu(x, t) dS dt, (C23)

where we have defined

Q(x, t) = −[(∇q∇qχ )(q̃, d)]−1[(∇q∇dχ )(q̃, d)]P(x, t). (C24)

Using eq. (C23), the desired expression for δJ can be obtained by setting

h(x, t) = −[∇q f (q̃)] · [(∇q∇qχ )(q̃, d)]−1[(∇q∇dχ )(q̃, d)]P(x, t), h(x, t) = 0. (C25)

In particular, for the choice f (q̃) = 1/s̃, we obtain

h(x, t) = 1

s̃2
ê3 · [(∇q∇qχ )(q̃, d)]−1[(∇q∇dχ )(q̃, d)]P(x, t), h(x, t) = 0, (C26)

for the corresponding Fréchet kernel, where ê3 is an (Nt + 3)-dimensional vector whose third component is equal to 1 and all others equal
zero.

A P P E N D I X D : N U M E R I C A L C A L C U L AT I O N S I N S P H E R I C A L LY S Y M M E T R I C
E A RT H M O D E L S

In this appendix we describe the numerical implementation of our theory in a spherically symmetric earth model possessing a solid elastic
inner core, a compressible inviscid fluid outer core, a viscoelastic mantle with Maxwell-solid rheology and an elastic lithosphere. In doing
so, our starting point is the weak form of the viscoelastic loading problem given in eqs (2.51) and (B39). In spherically symmetric earth
models, this problem can be simplified substantially by expanding the various fields in generalized spherical harmonics, and so obtaining
a ‘reduced weak form’ of the loading problem in which there is complete decoupling of the radial expansion functions for each spherical
harmonic of degree l and order m. There is, moreover, a further decoupling of the system into spheroidal and toroidal subsystems, with
solution of the latter system not being required in the GIA forward problem. We then briefly describe a simple and efficient numerical method
for the solution of the reduced weak form of the viscoelastic loading problem. This approach is based on the spatial discretization using a
1-D spectral-element method, while the time evolution of the system is determined using an explicit second-order Runge–Kutta integration
scheme. Using this numerical method, we can obtain solutions to both the GIA forward and adjoint problems, and so determine sensitivity
kernels for both rate-of-loading and mantle viscosity. The numerical code developed for solving the viscoelastic loading problem has been
benchmarked against results presented in the literature.

D1 Generalized spherical harmonic expansions

We let (r, θ , ϕ) denote the usual spherical polar coordinates, (r̂, θ̂ , ϕ̂) the associated unit basis vectors and recall the definition

ê− = 1√
2

(θ̂ − iϕ̂), (D1)

ê0 = r̂, (D2)

ê+ = − 1√
2

(θ̂ + iϕ̂), (D3)

of the ‘canonical basis vectors’ given by Phinney & Burridge (1973). We write u−, u0 and u+ for the so-called ‘contravariant components’ of
u with respect to the canonical basis vectors, and note that they are related to the spherical polar components through

ur = u0, (D4)

uθ = 1√
2

(u− − u+), (D5)

uϕ = − i√
2

(u− + u+). (D6)

These contravariant components can be expanded in the form

uα =
∑
lm

uα
lmY α

lm, (D7)

 at C
am

bridge U
niversity L

ibrary on January 24, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


68 D. Al-Attar and J. Tromp

where Y N
lm are the fully normalized generalized spherical harmonics defined in appendix C of Dahlen & Tromp (1998), and summation is over

integer values for 0 ≤ l ≤ ∞ and −l ≤ m ≤ l. It will be useful to define an alternative set of coefficients functions for this vector through

u±
lm = 1√

2
k(Vlm ± iWlm), (D8)

u0
lm = Ulm, (D9)

where

k =
√

l(l + 1), (D10)

which correspond to the toroidal and spheroidal combinations of Phinney & Burridge (1973). Given these definitions, it is a simple matter to
show that the spherical polar components of the displacement vector can be written

ur =
∑
lm

UlmY 0
lm, (D11)

uθ =
∑
lm

1

2
k
[
(Y −1

lm − Y +1
lm )Vlm − i(Y −1

lm + Y +1
lm )Wlm

]
, (D12)

uφ = −
∑
lm

1

2
k
[
i(Y −1

lm + Y +1
lm )Vlm + (Y −1

lm − Y +1
lm )Wlm

]
. (D13)

We note that these expansions could alternatively be written in using the ordinary spherical harmonics Ylm along with their derivatives with
respect to θ and φ (e.g. Woodhouse & Deuss 2007). For our numerical calculations, however, we find it easier to work directly with generalized
spherical harmonics. In a similar manner, we can expand the perturbed gravitational potential as

φ =
∑
lm

φlmY 0
lm, (D14)

and the applied surface σ load in the form

σ =
∑
lm

σlmY 0
lm . (D15)

Although we wish only to deal with real-valued loads and deformation fields, the generalized spherical harmonics and associated expansion
coefficients are complex valued. Using the identity

Y N∗
lm = (−1)m+N Y −N

l−m, (D16)

given in eq. (C109) of Dahlen & Tromp (1998), it may be shown that the requirement that σ is real valued implies

σ ∗
lm = (−1)mσl−m . (D17)

It follows that in specifying the load σ we need only give the values of its expansion coefficients σ lm for 0 ≤ m ≤ l. Similarly, we can use eq.
(D16) to obtain the identities

U ∗
lm = (−1)mUl−m, V ∗

lm = (−1)m Vl−m, φ∗
lm = (−1)mφl−m . (D18)

In obtaining the reduced weak form of the viscoelastic loading problem, we will require expressions for a number of spatial derivatives
of the fields u and φ. Making use of the rules of contravariant differentiation (Phinney & Burridge 1973; Dahlen & Tromp 1998), it may be
shown that

∇ · u =
∑
lm

r−1
[
r∂r Ulm + 2Ulm − k2Vlm

]
Y 0

lm, (D19)

and that the contravariant components of the deviatoric strain d associated with u can be expanded as

dαβ =
∑
lm

dαβ

lm Y α+β

lm , (D20)

where the expansion coefficients are given by

d±±
lm = 1

2
k
√

k2 − 2r−1 (Vlm ± iWlm) , (D21)

d00
lm = 2

3
r−1

(
r∂r Ulm − Ulm + 1

2
k2Vlm

)
, (D22)
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d0±
lm = 1

2
√

2
kr−1 (r∂r Vlm − Vlm + Ulm) ± i

2
√

2
kr−1 (r∂r Wlm − Wlm) , (D23)

d±∓
lm = 1

3
r−1

(
r∂r Ulm − Ulm + 1

2
k2Vlm

)
. (D24)

Here, we note that

d00
lm − 2d−+

lm = 0, (D25)

in accordance with the requirement that d is symmetric and has zero trace. Similarly, we find that the gradient of the perturbed gravitational
potential can be written

(∇φ)α =
∑
lm

φ
|α
lmY α

lm, (D26)

where the coefficients φ
|α
lm are given by

φ
|±
lm = 1√

2
kr−1φlm, (D27)

φ
|0
lm = ∂rφlm . (D28)

Turning now to the internal variable m, we expand its contravariant components as

mαβ =
∑
lm

mαβ

lm Y α+β

lm . (D29)

Motivated by the above expressions for dαβ

lm , we introduce a set of new coefficient functions Mlm, Nlm, Rlm, Slm and Tlm through

m±±
lm = 1

2
k
√

k2 − 2r−1 (Mlm ± iNlm) , (D30)

m00
lm = 2

3
r−1 Rlm, (D31)

m0±
lm = 1

2
√

2
kr−1 (Slm ± iTlm) , (D32)

m±∓
lm = 1

3
r−1 Rlm, (D33)

which from eq. (D16) can be seen to satisfy

M∗
lm = (−1)m Ml−m, R∗

lm = (−1)m Rl−m, S∗
lm = (−1)m Sl−m . (D34)

The spherical polar components of m are related to the contravariant components by

mrr = m00, (D35)

mrθ = 1√
2

(m0− − m0+), (D36)

mrϕ = − i√
2

(m0− + m0+), (D37)

mθθ = 1

2
(m− + m++) − m−+, (D38)

mθϕ = − i

2
(m− − m++), (D39)

where we have only written down five of the components due to the symmetry of m and the trace-free condition

mrr + mθθ + mϕϕ = 0, (D40)
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and from eq. (D29), we obtain

mrr =
∑
lm

2

3
r−1 RlmY 0

lm, (D41)

mrθ =
∑
lm

1

4
kr−1

[
Slm(Y −1

lm − Y +1
lm ) − iTlm(Y −1

lm + Y +1
lm )
]
, (D42)

mrφ = −
∑
lm

1

4
kr−1

[
iSlm(Y −1

lm + Y +1
lm ) + Tlm(Y −1

lm − Y +1
lm )
]
, (D43)

mθθ =
∑
lm

r−1

{
1

4
k
√

k2 − 2
[
Mlm(Y −2

lm + Y +2
lm ) − iNlm(Y −2

lm − Y +2
lm )
]− 1

3
RlmY 0

lm

}
, (D44)

mθϕ = −
∑
lm

1

4
k
√

k2 − 2r−1
[
iMlm(Y −2

lm − Y +2
lm ) + Nlm(Y −2

lm + Y +2
lm )
]
. (D45)

In computing the viscosity kernel from eq. (4.9), we must evaluate the deviatoric stress tensor τ , and we note that its spherical polar
components can be calculated using eqs (D41)–(D45) if we make the substitutions

Mlm → 2μ0(Vlm − Mlm), (D46)

Rlm → 2μ0(r∂r Ulm − Ulm + 1

2
k2Vlm − Rlm), (D47)

Slm → 2μ0(r∂r Vlm − Vlm + Ulm − Slm), (D48)

Nlm → 2μ0(Wlm − Nlm), (D49)

Tlm → 2μ0(r∂r Wlm − Wlm − Tlm). (D50)

D2 Reduction of the weak form to decoupled radial equations

We now derive the ‘reduced weak form’ of the viscoelastic loading problem. To do so, we start from the weak form of the problem given
in eq. (2.51), and assume that the fields u, φ and m have been expanded in generalized spherical harmonics in the manner described in the
previous subsection. It will, however, be useful to write eq. (2.51) in the slightly different form

A(u̇, φ̇ | u′∗, φ′∗) −
∫

MS

2μ0

[
ṁ : m′ + 1

τ
(d − m) : (d′∗ − m′∗)

]
dV +

∫
∂ M

(∇	 · u′∗ + φ′∗)σ̇ dS = 0, (D51)

where ∗ denotes complex conjugation. It is clear that eq. (D51) holding for all test functions is equivalent to our previous statement of the
weak form of the problem. The presence of complex conjugates in eq. (D51) is, however, very convenient due to their occurrence in the
generalized spherical harmonic orthonormality relation∫

�

Y N∗
lm Y N

l ′m′ dS = δll ′δmm′ , (D52)

where � denotes the unit two-sphere (e.g. Dahlen & Tromp 1998, eq. C110). We now select particular values for (l, m) and suppose that the
test functions u′, φ′ and m′ have contravariant components given by

u
′α = u

′α
lmY α

lm, (D53)

φ′ = φ′
lmY 0

lm, (D54)

m
′αβ = m

′αβ

lm Y α+β

lm . (D55)

It will be useful to again introduce additional coefficient functions for u′ by

u
′±
lm = 1√

2
k(V ′

lm ± iW ′
lm), (D56)
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u
′0
lm = U ′′

lm, (D57)

and for m′ by

m
′±±
lm = 1

2
k
√

k2 − 2r−1
(
M ′

lm ± iN ′
lm

)
, (D58)

m
′00
lm = 2

3
r−1 R′

lm, (D59)

m
′0±
lm = 1

2
√

2
kr−1

(
S′

lm ± iT ′
lm

)
, (D60)

m
′±∓
lm = 1

3
r−1 R′

lm . (D61)

Substituting these expansions into the bilinear form A and making use of eq. (D52), we find after a simple but lengthy calculation that

A(u, φ | u′∗, φ′∗) =
∫

IS

κ(r∂r Ulm + 2Ulm − k2Vlm)(r∂r U
′∗
lm + 2U

′∗
lm − k2V

′∗
lm) dr + 4

3

∫
IS

μ0(r∂r Ulm − Ulm

+ 1

2
k2Vlm)

(
r∂r U

′∗
lm − U

′∗
lm + 1

2
k2V

′∗
lm

)
dr + k2

∫
IS

μ0(r∂r Vlm − Vlm + Ulm)(r∂r V
′∗

lm − V
′∗

lm + U
′∗
lm) dr

+ k2

∫
IS

μ0(r∂r Wlm − Wlm)(r∂r W
′∗
lm − W

′∗
lm) dr + k2(k2 − 2)

∫
IS

μ0(Vlm V
′∗

lm + Wlm W
′∗
lm) dr

+
∫

IS

4ρ(πGρr − g)UlmU
′∗
lmr dr + k2

∫
IS

ρg(VlmU
′∗
lm + Ulm V

′∗
lm)r dr +

∫
IS

ρ(∂rφlmU
′∗
lm + Ulm∂rφ

′∗
lm)r 2 dr

+ k2

∫
IS

ρ(Vlmφ
′∗
lm + φlm V

′∗
lm)r dr + 1

4πG

∫
I
(∂rφlm∂rφ

′∗
lmr 2 + k2φlmφ

′∗
lm) dr + 1

4πG
(l + 1)aφlm(a)φ

′∗
lm(a)

+
∫

IF

g−1∂rρφlmφ
′∗
lmr 2 dr +

∑
r∈dF S

ρ−(r )
[
g(r )Ulm(r )U

′∗
lm(r ) + φlm(r )U

′∗
lm(r ) + Ulm(r )φ

′∗
lm(r )

]
r 2

−
∑

r∈dSF

ρ+(r )
[
g(r )Ulm(r )U

′∗
lm(r ) + φlm(r )U

′∗
lm(r ) + Ulm(r )φ

′∗
lm(r )

]
r 2. (D62)

In obtaining this result, we have made use of Poisson’s equation

∂2
r 	 + 2r−1∂r	 = 4πGρ, (D63)

to eliminate ∂2
r 	, which arises from the terms ∇(u · ∇	) and ∇(u′ · ∇	) in the definition ofA. We have also employed a Dirichlet-to-Neumann

map to write

1

4πG

∫
R3

∇φ · ∇φ′∗ dV = 1

4πG

∫
M

∇φ · ∇φ′∗ dV + 1

4πG

∑
lm

(l + 1)aφlm(a)φ
′∗
lm(a), (D64)

and so circumvent the need to explicitly define φ and φ′ outside of the earth model (Chaljub & Valette 2004). In a similar manner, we obtain∫
MS

2μ0ṁ : m′∗ dV = 4

3

∫
IS

μ0 Ṙlm R
′∗
lm dr + k2

∫
IS

μ0(Ṡlm S
′∗
lm + Ṫlm T

′∗
lm) dr + k2(k2 − 2)

∫
IS

μ0(Ṁlm M
′∗
lm + Ṅlm N

′∗
lm) dr, (D65)

∫
MS

2μ0

τ
(d − m) : (d′∗ − m′∗) dV = 4

3

∫
IS

μ0

τ

(
r∂r Ulm − Ulm + 1

2
k2Vlm − Rlm

)(
r∂r U

′∗
lm − U

′∗
lm + 1

2
k2V

′∗
lm − R

′∗
lm

)
dr

+ k2

∫
IS

μ0

τ
(r∂r Vlm − Vlm + Ulm − Slm)(r∂r V

′∗
lm − V

′∗
lm + U

′∗
lm − S

′∗
lm) dr

+ k2

∫
IS

μ0

τ
(r∂r Wlm − Wlm − Tlm)(r∂r W

′∗
lm − W

′∗
lm − T

′∗
lm) dr

+ k2(k2 − 2)
∫

IS

μ0

τ
(Vlm − Mlm)(V

′∗
lm − M

′∗
lm) dr + k2(k2 − 2)

∫
IS

μ0

τ
(Wlm − Nlm)(W

′∗
lm − N

′∗
lm) dr,

(D66)
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∫
∂ M

(∇	 · u′∗ + φ′∗)σ̇ dS = −[gU
′∗
lm(a) + φ′

lm(a)]a2σ̇lm . (D67)

In the above expressions, it is seen that the variables naturally decouple into the ‘spheroidal subsystem’

{Ulm, Vlm, φlm, Mlm, Rlm, Slm}, (D68)

and the ‘toroidal subsystem’

{Wlm, Nlm, Tlm}. (D69)

We can now obtain reduced weak form of the viscoelastic loading problem. To do so, we first consider the equations for the spheroidal
subsystem, and set all toroidal test functions equal to zero. We then also set

U ′
lm = V ′

lm = φ′
lm = 0, (D70)

but leave M ′
lm , R′

lm and S′
lm arbitrary. From eq. (D51) along with eqs (D65) and (D66), we see that we must have

Ṁlm + 1

τ
Mlm = 1

τ
Vlm, (D71)

Ṙlm + 1

τ
Rlm = 1

τ

(
r∂r Ulm − Ulm + 1

2
k2Vlm

)
, (D72)

Ṡlm + 1

τ
Slm = 1

τ
(r∂r Vlm − Vlm + Ulm) . (D73)

We note that these equations can also be obtained directly from eq. (2.32). Next, we set

M ′
lm = R′

lm = S′
lm = 0, (D74)

but let U ′
lm , V ′

lm and φ′
lm be arbitrary. Using eqs (D62), (D66) and (D67), we see that eq. (D51) implies

AS
l (U̇lm, V̇lm, φ̇lm | U

′∗
lm, V

′∗
lm, φ

′∗
lm) = RS

l (Ulm, Vlm, Mlm, Rlm, Slm | U
′∗
lm, V

′∗
lm) + F S

l (σ̇lm | U
′∗
lm, φ

′∗
lm), (D75)

which must hold for all radial test functions U ′
lm , V ′

lm and φ′
lm . In this equation, AS

l is the bilinear form

AS
l (Ulm, Vlm, φlm | U ′

lm, V ′
lm, φ′

lm) =
∫

IS

κ(r∂r Ulm + 2Ulm − k2Vlm)(r∂r U ′
lm + 2U ′

lm − k2V ′
lm) dr

+4

3

∫
IS

μ0

(
r∂r Ulm − Ulm + 1

2
k2Vlm

)
(r∂r U ′

lm − U ′
lm + 1

2
k2V ′

lm) dr

+k2

∫
IS

μ0(r∂r Vlm − Vlm + Ulm)(r∂r V ′
lm − V ′

lm + U ′
lm) dr + k2(k2 − 2)

∫
Is

μ0Vlm V ′
lm dr

+
∫

IS

4ρ(πGρr − g)UlmU ′
lmr dr + k2

∫
IS

ρg(VlmU ′
lm + Ulm V ′

lm)r dr

+
∫

IS

ρ(∂rφlmU ′
lm + Ulm∂rφ

′
lm)r 2 dr + k2

∫
IS

ρ(Vlmφ′
lm + φlm V ′

lm)r dr

+ 1

4πG

∫
I
(∂rφlm∂rφ

′
lmr 2 + k2φlmφ′

lm) dr + 1

4πG
(l + 1)aφlm(a)φ′

lm(a) +
∫

IF

g−1∂rρφlmφ′
lmr 2 dr

+
∑

r∈dF S

ρ−(r )
[
g(r )Ulm(r )U ′

lm(r ) + φlm(r )U ′
lm(r ) + Ulm(r )φ′

lm(r )
]

r 2

−
∑

r∈dSF

ρ+(r )
[
g(r )Ulm(r )U ′

lm(r ) + φlm(r )U ′
lm(r ) + Ulm(r )φ′

lm(r )
]

r 2, (D76)

which is symmetric in the sense that

AS
l (Ulm, Vlm, φlm | U ′

lm, V ′
lm, φ′

lm) = AS
l (U ′

lm, V ′
lm, φ′

lm | Ulm, Vlm, φlm), (D77)
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while Rl is given by

RS
l (Ulm, Vlm, Mlm, Rlm, Slm | U ′

lm, V ′
lm) = 4

3

∫
IS

μ0

τ

(
r∂r Ulm − Ulm + 1

2
k2Vlm − Rlm

)(
r∂r U ′

lm − U ′
lm + 1

2
k2V ′

lm

)
dr

+ k2

∫
IS

μ0

τ
(r∂r Vlm − Vlm + Ulm − Slm)(r∂r V ′

lm − V ′
lm + U ′

lm) dr

+ k2(k2 − 2)
∫

IS

μ0

τ
(Vlm − Mlm)V ′

lm dr, (D78)

and Fl by

F S
l (σ̇lm | U ′

lm, φ′
lm) = −[gU ′

lm(a) + φ′
lm(a)]a2σ̇lm . (D79)

Taken together, eqs (D75), (D71), (D72) and (D73) constitute a coupled system of evolution equations for the variables

{Ulm, Vlm, φlm, Mlm, Rlm, Slm}. (D80)

In the case that σ lm is discontinuous, this system of evolution equations must be supplemented by the jump conditions

AS
l (�Ulm, �Vlm, �φlm | U

′∗
lm, V

′∗
lm, φ′

lm) = F S
l (�σlm | U

′∗
lm, φ

′∗
lm), (D81)

and

�Mlm = �Rlm = �Slm = 0. (D82)

Repeating the above derivation but now for the toroidal variables, we obtain

AT
l (Ẇlm | W

′∗
lm) = RT

l (Wlm, Nlm, Tlm | W
′∗
lm), (D83)

Ṅlm + 1

τ
Nlm = 1

τ
Wlm, (D84)

Ṫlm + 1

τ
Tlm = 1

τ
(r∂r Wlm − Wlm), (D85)

where

AT
l (Wlm | W ′

lm) = k2

∫
IS

μ0(r∂r Wlm − Wlm)(r∂r W ′
lm − W ′

lm) dr + k2(k2 − 2)
∫

IS

μ0Wlm W ′
lm dr, (D86)

RT
l (Wlm, Nlm, Tlm | W ′

lm) = k2

∫
IS

μ0

τ
(r∂r Wlm − Wlm − Tlm)(r∂r W ′

lm − W ′
lm) dr + k2(k2 − 2)

∫
IS

μ0

τ
(Wlm − Nlm)W ′

lm dr. (D87)

As these equations have no force terms, it follows from the initial conditions that

Wlm = Nlm = Tlm = 0, (D88)

for all t ∈ [t0, t1], and so we need not consider the toroidal subsystem explicitly when considering the GIA forward problem in spherically
symmetric earth models.

The force term occurring in the adjoint viscoelastic loading problem stated in eq. (3.20) takes a more general form than that in the
forward problem considered above. It will, therefore, be of use to generalize the above results slightly by making the substitution∫

∂ M
(∇	 · u′∗ + φ′∗)σ̇ dS →

∫
∂ M

(ḣ · u′∗ + ḣ φ′∗) dS, (D89)

in eq. (D51) with h and h given functions on ∂M. We suppose that h and h have been expanded in generalized spherical harmonics

hα =
∑
lm

hα
lmY α

lm, (D90)

h =
∑
lm

hlmY 0
lm, (D91)

where hα denote the contraviant components of h, and that the hα
lm take the form

h±
lm = 1√

2
k(Glm ± iHlm), (D92)

h0
lm = Flm, (D93)
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which correspond to the toroidal and spheroidal combinations of Phinney & Burridge (1973). With the test functions u′, and φ′ defined in
eqs (D53) and (D54), we obtain∫

∂ M
(ḣ · u′∗ + ḣφ′∗) dS = a2 ḞlmU

′∗
lm(a) + k2a2

[
Ġlm V

′∗
lm(a) + ḣlm W

′∗
lm(a)

]
+ a2ḣlmφ

′∗
lm(a). (D94)

It follows that for such a force term eq. (D75) for the spheroidal subsystem must be modified by making the replacement

F S
l (σ̇lm | U

′∗
lm, φ

′∗
lm) → F S

l (Ḟlm, Ġlm, ḣlm | U
′∗
lm, V

′∗
lm, φ

′∗
lm), (D95)

where the term on the right-hand side is defined by

F S
l (Ḟlm, Ġlm, ḣlm | U

′∗
lm, V

′∗
lm, φ

′∗
lm) = a2 ḞlmU

′∗
lm(a) + k2a2Ġlm V

′∗
lm(a) + a2ḣlmφ

′∗
lm(a). (D96)

Similarly, eq. (D83) for the toroidal subsystem becomes

AT
l (Ẇlm | W

′∗
lm) = RT

l (Wlm, Nlm, Tlm | W
′∗
lm) + F T

l (Ḣlm | W
′∗
lm), (D97)

with

F T
l (Ḣlm | W

′∗
lm) = k2a2ḣlm W

′∗
lm(a). (D98)

We note that for this more general problem, the toroidal equations are not necessarily homogeneous. In particular, for certain choices of
objective functional the adjoint deformation fields may have a non-zero toroidal component.

D3 Numerical solution of the viscoelastic loading problem in a spherical earth model

We now consider the numerical solution of the viscoelastic loading problem in a spherically symmetric earth model based upon the reduced
weak form of the problem described above. In this approach, we have seen that there is complete decoupling between the equations for
different spherical harmonics degrees and orders, and so we focus on one particular value of (l, m) and drop the spherical harmonic subscripts
on the various fields for notational simplicity. There is, moreover, a further decoupling into the spheroidal and toroidal subsystems, and for
definiteness we shall restrict attention to the more interesting spheroidal case.

It follows that we wish to determine the time evolution for t ∈ [t0, t1] of the fields {U, V, φ, M, R, S}, which are governed by the eqs
(D71), (D72), (D73) and (D75) and subject to initial conditions

U = V = φ = M = R = S = 0, (D99)

at time t0. Let us suppose that at some time t ∈ [t0, t1] we know the values of {U, V, φ, M, R, S}, this being, in particular, the case for
t = t0. We can then use eqs (D71), (D72) and (D73) to calculate the corresponding values of Ṁ , Ṙ and Ṡ explicitly. Furthermore, eq. (D75)
defines a 1-D boundary value problem whose solution yields the values of the time derivatives U̇ , V̇ and φ̇. Supposing for the moment that
this boundary value problem can be solved, the time evolution of the system can be approximated numerically using a suitable time-stepping
algorithm. In our calculations, we have employed a second-order Runge–Kutta method (e.g. Press et al. 1986) with fixed time step equal to
1
2 τmin, where τmin is the smallest value of the Maxwell relaxation time of the earth model. Numerical test have shown this integration scheme
to be stable, and it seems to be more than sufficient for this problem. In the case that the applied surface load is only piecewise continuous,
this time-stepping scheme must be supplemented with the jump condition in eq. (D81), which is of the same form as the boundary value
problem arising in the calculation of the time derivatives U̇ , V̇ and φ̇.

In describing the numerical solution of eq. (D75) it will simplify the exposition to instead consider the equation

AS
l (Ulm, Vlm, φlm | U

′∗
lm, V

′∗
lm, φ

′∗
lm) = F S

l (σlm | U
′∗
lm, φ

′∗
lm), (D100)

which arises from the spherical harmonic reduction of a static elastic loading problem. The only non-notational difference between eqs (D75)
and (D100) is that the force term in the former problem is slightly more complicated, and it should be clear how the method described can be
extended to this case. To determine a numerical solution of eq. (D100), we employ a spectral element discretization to reduce the problem to
a system of linear algebraic equations. In the following subsections, we briefly explain the details of this discretization and the solution of the
resulting linear system.

D3.1 Radial mesh and Lagrange polynomial interpolation

The radial mesh comprises ne elements Ii = [ri, ri + 1] with ri < ri + 1 such that

I =
ne⋃

i=1

Ii , (D101)

where we recall that I = [0, a] with a the radius of the earth model. We assume that these elements are such that all radial discontinuities
within the model lie on the boundary between adjacent elements. A surface load having spherical harmonic degree l has a characteristic length
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equal to 2πa
(l+ 1

2 )
, and this is also true of the resulting deformation. In order for our radial discretization to be sufficiently accurate, we require

that each element of the mesh spans a radial distance less than one-tenth of this characteristic length, with the suitability of this choice having
been verified numerically. Each of these elements can be mapped bijectively onto a reference element ξ ∈ [−1, 1] through

ξ (r ) = 2
r − ri

ri+1 − ri
− 1, (D102)

and with inverse given by

r (ξ ) = ri + 1

2
(ri+1 − ri )(ξ + 1). (D103)

Using these mappings, it is then possible to represent any function defined on Ii by one defined on the reference element [−1, 1]. We also
note from eq. (D103) the relation

dr

dξ
= 1

2
(ri+1 − ri ), (D104)

which enables the transformation of derivatives and integrals between the two coordinate systems.
We now fix an integer nl ≥ 2, and let ξ j be the nl + 1 Gauss–Lobatto–Legendre (GLL) points on [−1, 1], which are defined as roots of

the equation

(1 − ξ 2)P ′
nl

(ξ ) = 0, (D105)

where Pnl is the nlth Legendre polynomial, and we assume the ordering ξ j < ξ j + 1 (e.g. Komatitsch & Tromp 1998). We note that ξ 1 = −1
and ξnl +1 = 1, so some GLL points always lie exactly on the boundary of the reference element. Associated with these GLL points, we define
the nl + 1 Lagrange polynomials

l j (ξ ) =
∏nl +1

k=1 (ξ − ξk)∏
k �= j (ξ j − ξk)

, (D106)

which satisfy

l j (ξk) = δ jk . (D107)

Using eq. (D103), we can map these GLL points to a set of nodes

ri j = ri + 1

2
(ri+1 − ri )(ξ j + 1), (D108)

lying in the ith element of the mesh and such that there always exist nodes at either end of the element.
Let f be a scalar function defined on I and write fij = f(rij) for its value at the jth node lying in ith element. We then define the Lagrange

interpolation of f on Ii by

f (r (ξ )) ≈
nl∑

j=1

fi j l j (ξ ), (D109)

which is seen from eq. (D107) to be exact at each rij, and is, in fact, everywhere exact if f is a polynomial of order less than or equal to nl + 1.
Corresponding to eq. (D109), we obtain an approximate expression for the radial derivative f on Ii in the form

d f

dr
(r (ξ )) ≈

nl∑
j=1

fi j l
′
j (ξ )

dξ

dr
= 2

ri+1 − ri

nl∑
j=1

fi j l
′
j (ξ ), (D110)

where l ′
j is the derivative of the jth Lagrange polynomial with respect to its argument and in obtaining the final equality we have made use of

eq. (D104). We can also approximate the integral of f over Ii using the GLL quadrature rule as∫
Ii

f (r ) dr =
∫ 1

−1
f (ξ (r ))

dr

dξ
dξ ≈ 1

2
(ri+1 − ri )

nl∑
j=1

fi jw j , (D111)

with wj integration weights that can be calculated numerically (Canuto et al. 1988, p. 61).

D3.2 Assembly and solution of the linear system

To discretize eq. (D100), we approximate U, V and φ using Lagrange interpolation on each of the nodes Ii of the radial mesh

U (r (ξ )) ≈
nl∑

j=1

Ui j l j (ξ ), (D112)
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V (r (ξ )) ≈
nl∑

j=1

Vi j l j (ξ ), (D113)

φ(r (ξ )) ≈
nl∑

j=1

φi j l j (ξ ), (D114)

and so reduce the problem to determining the unknown interpolation coefficients Uij, Vij and φij. As U and V are defined only in solid regions,
Uij and Vij needed be introduced only for those elements Ii ⊆ IS. Furthermore, continuity of U, V in IS and of φ in I means that for adjacent
radial elements we must have

Ui nl +1 = Ui+1 1, (D115)

Vi nl +1 = Vi+1 1, (D116)

φi nl +1 = φi+1 1, (D117)

where the first two of these conditions apply only if both Ii and Ii + 1 lie in solid regions. Subject to these constraints, we can construct a global
numbering of the independent coefficients such that at each global node in the mesh there is either one or three degrees of freedom depending
on whether the node lies, respectively, in fluid or solid regions of the model. We note, in particular, that if a node lies on a boundary between
fluid and solid regions then it is associated with three degrees of freedom. We can similarly approximate the test functions U′, V′ and φ′ in
the above manner using Lagrange polynomials. Using these interpolation formulae, we can then reduce eq. (D100) into a system of linear
algebraic equations for the interpolation coefficients Uij, Vij and φij. In doing so, we make use of eqs (D110) and (D111) to approximately
evaluate the various derivatives and integrals occurring in the definition of the bilinear form AS

l . With a suitable ordering of the independent
interpolation coefficients, this process results in a banded symmetric linear system, with the bandwidth equal to 6(nl − 1) + 1. Even for fairly
large values of l (e.g. less than 500) the size of the linear system is modest, and can readily be solved using lower-upper decomposition (e.g.
Press et al. 1986).

A P P E N D I X E : S M O O T H E D D E LTA F U N C T I O N E X PA N S I O N S
I N S P H E R I C A L H A R M O N I C S

In the calculation of the adjoint load corresponding to certain objective functionals, it is necessary to form spherical harmonic expansions of
delta functions δ(x − x′) on the sphere. This is, in particular, the case for point measurements of the deformation field in space. The exact
expansion of this function is readily found to be

δ(x − x′) = 1

a2

∞∑
l=0

l∑
m=−l

Y 0∗
lm (θ ′, ϕ′)Y 0

lm(θ, ϕ), (E1)

where a is the radius of ∂M, (θ , ϕ) are the spherical polar coordinates associated with x and (θ ′, ϕ′) are those corresponding to x′ and the
convergence of this infinite sum must be understood in the distributional sense. In practice, we must, of course, work with a truncated version
of this expansion, which includes non-zero terms only up to some maximum spherical harmonic degree L. The simplest such truncated
expansion is given by

δ(x − x′) ≈ 1

a2

L∑
l=0

l∑
m=−l

Y 0∗
lm (θ ′, ϕ′)Y 0

lm(θ, ϕ), (E2)

where we have removed all terms of degree higher than L. Use of this expansion does, however, lead to significant ringing due to the sharp
cut-off of the spherical harmonic sum. Nonetheless, if we know a priori that the load σ , which produced the deformation field has negligible
power in its spherical harmonic spectrum for l > L, then eq. (E2) is a suitable integral kernel for making spatial point measurements of the
deformation field. Unfortunately, however, this ringing inherited by the adjoint deformation fields and, in turn, by the rate-of-loading and
viscosity kernels. In the gradient-based optimization methods, these kernels are used to iteratively update the load and viscosity models, and
so ringing in the kernels can lead to short wavelength artefacts in the models obtained. To circumvent this problem, we instead make use of
the alternative truncated expansion

δ(x − x′) ≈ 1

a2

L∑
l=0

l∑
m=−l

exp

(
−2π

l + 1

L + 1
2

)
Y 0∗

lm (θ ′, ϕ′)Y 0
lm(θ, ϕ), (E3)

which for L → ∞ also converges in the sense of distributions. In this case, there is no undesired ringing away from the observation point due
to the exponential damping of short wavelength terms in the expansion. Moreover, it may be shown that the expansion in eq. (E3) defines
a function on ∂M that has its support approximately contained in a spherical cap about the observation point (θ ′, ϕ′) whose radius scales
like 2πa/(L + 1

2 ), and that the integral of this function over ∂M is approximately equal to 1. Because of these properties, eq. (E3) defines
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a suitable integral kernel for measuring the point values of deformation fields which are a priori known to be smooth over length scales
shorter than 2πa/(L + 1

2 ). Use of eq. (E3) in the adjoint calculations leads to rate-of-loading kernels that are also smooth over length scales
of 2πa/(L + 1

2 ). Within the context of gradient-based optimization, this means that updates to the load model cannot add shorter wavelength
features, and so use of eq. (E3) for a given value of L amounts to an implicit form of regularization on the smoothness of the load model.

A P P E N D I X F : R A D I A L V I S C O S I T Y K E R N E L S

In Section 3.1, we introduced a radial viscosity kernel K η through

K η =
∫

�

Kηr 2 dS. (F1)

From eq. (3.22), we see that

K η = 1

2η

∫ t1

t0

∫
�

r 2τ (t) : τ †(t1 − t + t0) dS dt, (F2)

and using the generalized spherical harmonic expansions of τ and τ † along with the orthonormality relation in eq. (D52) we obtain

K η = 4μ2
0

3η

∑
lm

∫ t1

t0

(
r∂r Ulm − Ulm + 1

2
k2Vlm − Rlm

)(
r∂r U †∗

lm − U †∗
lm + 1

2
k2V †∗

lm − R†∗
lm

)
dt

+μ2
0

η

∑
lm

k2

∫ t1

t0

(r∂r Vlm − Vlm + Ulm − Slm)(r∂r V †∗
lm − V †∗

lm + U †∗
lm − S†∗

lm) dt

+μ2
0

η

∑
lm

k2(k2 − 2)
∫ t1

t0

(Vlm − Mlm)(V †∗
lm − M†∗

lm) dt, (F3)

where it is understood that the forward fields are evaluated at the time t, while the adjoint fields are evaluated at the reversed time t1 − t + t0.
We note that in obtaining this expression we have made use of the identities given in eqs (D18) and (D34).
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