ClimaTea Journal Club

Date: 

Tuesday, March 3, 2020, 3:00pm

Location: 

HUCE MCZ 440

Speaker: Nathanael Wong 

Nathanael will be discussing "Physical Mechanisms Controlling the Offshore Propagation of Convection in the Tropics" (parts 1 and 2) by Coppin and Bellon (2019). See attached.

Abstract: Part 1, Flat Island

An idealized convection-permitting simulation is performed to investigate the physical mechanisms responsible for the nighttime offshore propagation of convection around tropical islands. An idealized island is placed in the middle of a long, nonrotating channel oceanic domain with constant sea surface temperature. A strong diurnal cycle typical of a tropical island is simulated, with a thermally forced sea breeze in daytime and the associated inland propagation of precipitation. Offshore propagation of a land breeze and its associated convection is simulated every night but with varying extent. Gravity waves of first and second baroclinic modes trigger convection far from the coast if the offshore conditions are favorable. This accelerates the propagation speed of the land breeze as it reduces the onshore wind associated with the lower branch of the overturning large-scale circulation. Higher-order modes may trigger convection or reinforce existing convection but less systematically. The distance of propagation is particularly sensitive to humidity and temperature at the top of the boundary layer, with occasional incursions of a dry anomaly at the top of the boundary layer near the island preventing convection from developing far from the island.

Abstract: Part 2, Influence of Topography

A set of idealized convection‐permitting simulations is performed to investigate the influence of topography on the physical mechanisms responsible for the nocturnal offshore propagation of convection around tropical islands. All simulations have an idealized island in the middle of a long channel oceanic domain, with constant sea surface temperature and without rotation. To diagnose the impact of topography, we compare a flat island simulation with two simulations with mountain ranges of different shapes. The topography over the island has a strong impact on the diurnal cycle of convection as clouds tend to remain all day over the highest topography. This weakens the diurnal cycle and the land breeze front and triggers a comparatively less frequent long‐distance offshore propagation of convection. As in the flat simulation, the distance of offshore propagation is particularly sensitive to humidity and temperature at the top of the boundary layer. A shallow circulation that is asymmetric with respect to the island influences the boundary layer top humidity and can favor propagation on one side of the island or the other. These results mimic cloud and precipitation patterns observed prior to the Madden‐Julian Oscillation propagation over the Maritime Continent. The shape of the topography does not seem to influence the offshore propagation of convection significantly except for mountain‐valley breezes that reinforce the land breeze and the establishment of the asymmetric shallow circulation.

See also: ClimaTea